Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(14): 4265-4271, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557055

RESUMO

Understanding the interplay between bright and dark exciton states is crucial for deciphering the luminescence properties of low-dimensional materials. The origin of the outstanding brightness of lead halide perovskites remains elusive. Here, we analyze temperature-dependent time-resolved photoluminescence to investigate the population mixing between bright and dark exciton sublevels in individual CsPbBr3 nanocrystals in the intermediate confinement regime. We extract bright and dark exciton decay rates and show quantitatively that the decay dynamics can only be reproduced with second-order phonon transitions. Furthermore, we find that any exciton sublevel ordering is compatible with the most likely population transfer mechanism. The remarkable brightness of lead halide perovskite nanocrystals rather stems from a reduced asymmetry between bright-to-dark and dark-to-bright conversion originating from the peculiar second-order phonon-assisted transitions that freeze bright-dark conversion at low temperatures together with the very fast radiative recombination and favorable degeneracy of the bright exciton state.

2.
Nano Lett ; 23(8): 3607-3613, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37014137

RESUMO

Lead halide perovskite nanocrystals are promising materials for classical and quantum light emission. To understand these outstanding properties, a thorough analysis of the band-edge exciton emission is needed, which is not reachable in ensemble and room-temperature studies because of broadening effects. Here, we report on a cryogenic-temperature study of the photoluminescence of single CsPbBr3 nanocrystals in the intermediate quantum confinement regime. We reveal the size-dependence of the spectral features observed: the bright triplet exciton energy splittings, the trion and biexciton binding energies, and the optical phonon replica spectrum. In addition, we show that bright triplet energy splittings are consistent with a pure exchange model and that the variety of polarization properties and spectra recorded can be rationalized simply by considering the orientation of the emitting dipoles and the populations of the emitting states.

3.
ACS Nano ; 14(10): 13470-13477, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32966063

RESUMO

van der Waals two-dimensional layered heterostructures have recently emerged as a platform, where the interlayer couplings give rise to interesting physics and multifunctionalities in optoelectronics. Such couplings can be rationally controlled by dielectric, separation, and stacking angles, which affect the overall charge or energy-transfer processes, and emergent potential landscape for twistronics. Herein, we report the efficient Förster resonance energy transfer (FRET) in WS2/hBN/MoSe2 heterostructure, probed by both steady-state and time-resolved optical spectroscopy. We clarified the evolution behavior of the electron-hole pairs and free electrons from the trions, that is, ∼59.9% of the electron-hole pairs could transfer into MoSe2 by FRET channels (∼38 ps) while the free electrons accumulate at the WS2/hBN interface to photogate MoSe2. This study presents a clear picture of the FRET process in two-dimensional transition-metal dichalcogenides' heterojunctions, which establishes the scientific foundation for developing the related heterojunction optoelectronic devices.

4.
Nano Lett ; 20(7): 5359-5366, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543201

RESUMO

Two-dimensional (2D) van der Waals heterostructures have attracted enormous research interests due to their emergent electrical and optical properties. The comprehensive understanding and efficient control of interlayer couplings in such devices are crucial for realizing their functionalities, as well as for improving their performance. Here, we report a successful manipulation of interlayer charge transfer between 2D materials by varying different stacking layers consisting of graphene, hexagonal boron nitride, and tungsten disulfide. Under visible-light excitation, despite being separated by few-layer boron nitride, the graphene and tungsten disulfide exhibit clear modulation of their doping level, i.e., a change of the Fermi level in graphene as large as 120 meV and a net electron accumulation in WS2. By using a combination of micro-Raman and photoluminescence spectroscopy, we demonstrate that the modulation is originated from simultaneous manipulation of charge and/or energy transfer between each of the two adjacent layers.

5.
Nano Lett ; 20(5): 3673-3680, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32212737

RESUMO

Optically bright lead halide perovskite nanocrystals of different morphologies ranging from nanocubes to flat nanoplatelets to elongated nanowires have been reported. The morphology of the nanocrystals is expected to affect various properties such as the band edge energy and the electron-hole exchange interaction. However, aside from nanocubes, the investigation of optical properties in the lead halide perovskite nanocrystals of different morphologies at the single emitter level has been lacking. We have performed optical spectroscopy in single CsPbBr3 nanoplatelets and observed single photon emission without blinking. Furthermore, the photoluminescence emission exhibits excitonic fine structure peaks similar to what has been previously observed in nanocubes. Our work stimulates further investigations into the excitonic and quantum optics properties when the lateral size and morphology can be further controlled in lead halide perovskite nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...