Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Biol Evol, v. 41, n. 7, msae123, jun. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5428

RESUMO

The outstanding human cognitive capacities are computed in the cerebral cortex, a mammalian-specific brain region and the place of massive biological innovation. Long noncoding RNAs have emerged as gene regulatory elements with higher evolutionary turnover than mRNAs. The many long noncoding RNAs identified in neural tissues make them candidates for molecular sources of cerebral cortex evolution and disease. Here, we characterized the genomic and cellular shifts that occurred during the evolution of the long noncoding RNA repertoire expressed in the developing cerebral cortex and explored putative roles for these long noncoding RNAs in the evolution of the human brain. Using transcriptomics and comparative genomics, we comprehensively annotated the cortical transcriptomes of humans, rhesus macaques, mice, and chickens and classified human cortical long noncoding RNAs into evolutionary groups as a function of their predicted minimal ages. Long noncoding RNA evolutionary groups showed differences in expression levels, splicing efficiencies, transposable element contents, genomic distributions, and transcription factor binding to their promoters. Furthermore, older long noncoding RNAs showed preferential expression in germinative zones, outer radial glial cells, and cortical inhibitory (GABAergic) neurons. In comparison, younger long noncoding RNAs showed preferential expression in cortical excitatory (glutamatergic) neurons, were enriched in primate and human-specific gene co-expression modules, and were dysregulated in neurodevelopmental disorders. These results suggest different evolutionary routes for older and younger cortical long noncoding RNAs, highlighting old long noncoding RNAs as a possible source of molecular evolution of conserved developmental programs; conversely, we propose that the de novo expression of primate- and human-specific young long noncoding RNAs is a putative source of molecular evolution and dysfunction of cortical excitatory neurons, warranting further investigation.

2.
ncRNA, v. 10, n. 2, 27, abr. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5312

RESUMO

Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as the target of PZQ, schistosome response to this drug remains incompletely understood, since effectiveness relies on other factors that may trigger a complex regulation of parasite gene expression. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that play important roles in S. mansoni homeostasis, reproduction, and fertility. Here, we show that in vivo PZQ treatment modulates lncRNA levels in S. mansoni. We re-analyzed public RNA-Seq data from mature and immature S. mansoni worms treated in vivo with PZQ and detected hundreds of lncRNAs differentially expressed following drug exposure, many of which are shared among mature and immature worms. Through RT-qPCR, seven out of ten selected lncRNAs were validated as differentially expressed; interestingly, we show that these lncRNAs are not adult worm stage-specific and are co-expressed with PZQ-modulated protein-coding genes. By demonstrating that parasite lncRNA expression levels alter in response to PZQ, this study unravels an important step toward elucidating the complex mechanisms of S. mansoni response to PZQ.

3.
PLoS Pathog, v. 19, n. 5, e1011369, mai. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4900

RESUMO

The trematode parasite Schistosoma mansoni causes schistosomiasis, which affects over 200 million people worldwide. Schistosomes are dioecious, with egg laying depending on the females’ obligatory pairing with males. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that have been involved in other species with reproduction, stem cell maintenance, and drug resistance. In S. mansoni, we recently showed that the knockdown of one lncRNA affects the pairing status of these parasites. Here, we re-analyzed public RNA-Seq data from paired and unpaired adult male and female worms and their gonads, obtained from mixed-sex or single-sex cercariae infections, and found thousands of differentially expressed pairing-dependent lncRNAs among the 23 biological samples that were compared. The expression levels of selected lncRNAs were validated by RT-qPCR using an in vitro unpairing model. In addition, the in vitro silencing of three selected lncRNAs showed that knockdown of these pairing-dependent lncRNAs reduced cell proliferation in adult worms and their gonads, and are essential for female vitellaria maintenance, reproduction, and/or egg development. Remarkably, in vivo silencing of each of the three selected lncRNAs significantly reduced worm burden in infected mice by 26 to 35%. Whole mount in situ hybridization experiments showed that these pairing-dependent lncRNAs are expressed in reproductive tissues. These results show that lncRNAs are key components intervening in S. mansoni adult worm homeostasis, which affects pairing status and survival in the mammalian host, thus presenting great potential as new therapeutic target candidates.

4.
Parasit Vectors ; 15(1): 176, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610661

RESUMO

Several studies have described the effects of human tumor necrosis factor alpha (hTNF-α) on Schistosoma mansoni. hTNF-α affects the worm's development, metabolism, egg-laying, gene expression and protein phosphorylation. The available data on the influence of hTNF-α on egg-laying in S. mansoni are controversial, but understanding the mechanism of egg-laying regulation in this species is essential in combating schistosomiasis. We characterized the effects of in vitro treatment of S. mansoni adult worms with different doses of hTNF-α (5, 20 and 40 ng/ml) for 5 days. We explored the effects on egg-laying rate, glucose levels, ATP metabolism, and messenger RNA (mRNA) expression levels of lactate dehydrogenase, glucose transporters and the parasite gene which acts as an hTNF-α receptor, SmTNFR. hTNF-α influenced egg-laying in a time- and dose-dependent manner: at a dose of 40 ng/ml, egg-laying increased on day 2 and decreased on days 3 and 4; at 20 ng/ml, egg-laying decreased on day 3; while at 5 ng/ml, egg-laying decreased on day 4. The total number of eggs produced was not affected by the different treatments, but the egg-laying dynamics were: the median egg-laying time decreased significantly with treatment, and egg developmental stages and size were also affected. At 5 and 20 ng/ml hTNF-α, lactate production diminished on day 3 up to day 5, while glucose uptake increased on day 5. At 40 ng/ml, glucose uptake diminished on day 1 up to day 3, while ATP accumulation was detected on day 5. No significant changes in mRNA expression were detected in any of the treatments. We found that crosstalk involving hTNF-α and parasite signaling plays a role in the fine-scale regulation of the worm's metabolism and physiology, and points to new strategies for disease control.


Assuntos
Schistosoma mansoni , Esquistossomose mansoni , Trifosfato de Adenosina/farmacologia , Animais , Glucose , Humanos , Lactatos/farmacologia , RNA Mensageiro/genética , Esquistossomose mansoni/parasitologia , Fator de Necrose Tumoral alfa/genética
5.
Front Genet, v. 13, 924877, set. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4554

RESUMO

Schistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects over 200 million people worldwide. New therapeutic targets are needed with only one drug available for treatment and no vaccine. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential. In other organisms, they have been shown as involved with reproduction, stem cell maintenance and drug resistance, and they tend to exhibit tissue-specific expression patterns. S. mansoni expresses thousands of lncRNA genes; however, the cell type expression patterns of lncRNAs in the parasite remain uncharacterized. Here, we have re-analyzed publicly available single-cell RNA-sequencing (scRNA-seq) data obtained from adult S. mansoni to identify the lncRNAs signature of adult schistosome cell types. A total of 8023 lncRNAs (79% of all lncRNAs) were detected. Analyses of the lncRNAs expression profiles in the cells using statistically stringent criteria were performed to identify 74 lncRNA gene markers of cell clusters. Male gamete and tegument progenitor lineages clusters contained most of the cluster-specific lncRNA markers. We also identified lncRNA markers of specific neural clusters. Whole-mount in situ hybridization (WISH) and double fluorescence in situ hybridization were used to validate the cluster-specific expression of 13 out of 16 selected lncRNA genes (81%) in the male and female adult parasite tissues; for one of these 16 gene loci, probes for two different lncRNA isoforms were used, which showed differential isoform expression in testis and ovary. An atlas of the expression profiles across the cell clusters of all lncRNAs detected in our analysis is available as a public website resource (http://verjolab.usp.br:8081). The results presented here give strong support to a tissue-specific expression and to a regulated expression program of lncRNAs in S. mansoni. This will be the basis for further exploration of lncRNA genes as potential therapeutic targets.

6.
Sci Rep ; 11(1): 21671, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737385

RESUMO

Trypanosoma cruzi-the causative agent of Chagas disease-like other kinetoplastids, relies mostly on post-transcriptional mechanisms for regulation of gene expression. However, trypanosomatids undergo drastic changes in nuclear architecture and chromatin structure along their complex life cycle which, combined with a remarkable set of reversible histone post-translational modifications, indicate that chromatin is also a target for control of gene expression and differentiation signals in these organisms. Chromatin-modifying enzymes have a direct impact on gene expression programs and DNA metabolism. In this work, we have investigated the function of T. cruzi histone deacetylase 4 (TcHDAC4). We show that, although TcHDAC4 is not essential for viability, metacyclic trypomastigote TcHDAC4 null mutants show a thin cell body and a round and less condensed nucleus located very close to the kinetoplast. Sixty-four acetylation sites were quantitatively evaluated, which revealed H2AT85ac, H4K10ac and H4K78ac as potential target sites of TcHDAC4. Gene expression analyses identified three chromosomes with overrepresented regions of differentially expressed genes in the TcHDAC4 knockout mutant compared with the wild type, showing clusters of either up or downregulated genes. The adjacent chromosomal location of some of these genes indicates that TcHDAC4 participates in gene expression regulation during T. cruzi differentiation.


Assuntos
Regulação da Expressão Gênica/genética , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Trypanosoma cruzi/genética , Acetilação , Animais , Técnicas de Cultura de Células , Doença de Chagas/genética , Chlorocebus aethiops , Cromatina/metabolismo , Expressão Gênica/genética , Humanos , Estágios do Ciclo de Vida/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas de Protozoários/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Trypanosoma cruzi/metabolismo , Células Vero
7.
Nat Commun ; 12(1): 6181, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702841

RESUMO

The rhesus macaque provides a unique model of acquired immunity against schistosomes, which afflict >200 million people worldwide. By monitoring bloodstream levels of parasite-gut-derived antigen, we show that from week 10 onwards an established infection with Schistosoma mansoni is cleared in an exponential manner, eliciting resistance to reinfection. Secondary challenge at week 42 demonstrates that protection is strong in all animals and complete in some. Antibody profiles suggest that antigens mediating protection are the released products of developing schistosomula. In culture they are killed by addition of rhesus plasma, collected from week 8 post-infection onwards, and even more efficiently with post-challenge plasma. Furthermore, cultured schistosomula lose chromatin activating marks at the transcription start site of genes related to worm development and show decreased expression of genes related to lysosomes and lytic vacuoles involved with autophagy. Overall, our results indicate that enhanced antibody responses against the challenge migrating larvae mediate the naturally acquired protective immunity and will inform the route to an effective vaccine.


Assuntos
Schistosoma mansoni/fisiologia , Esquistossomose mansoni/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Anticorpos Anti-Helmínticos/farmacologia , Antígenos de Helmintos/imunologia , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Genes de Helmintos/genética , Granulócitos/imunologia , Histonas/metabolismo , Interações Hospedeiro-Parasita/imunologia , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Linfócitos/imunologia , Macaca mulatta/imunologia , Macaca mulatta/parasitologia , Masculino , Contagem de Ovos de Parasitas , Reinfecção/imunologia , Esquistossomose mansoni/parasitologia
8.
Parasitol Res, v. 121, p. 1091-1115, dez. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4022

RESUMO

Long non-coding RNAs (lncRNAs) emerged in the past 20 years due to massive amounts of scientific data regarding transcriptomic analyses. They have been implicated in a plethora of cellular processes in higher eukaryotes. However, little is known about lncRNA possible involvement in parasitic diseases, with most studies only detecting their presence in parasites of human medical importance. Here, we review the progress on lncRNA studies and their functions in protozoans and helminths. In addition, we show an example of knockdown of one lncRNA in Schistosoma mansoni, SmLINC156349, which led to in vitro parasite adhesion, motility, and pairing impairment, with a 20% decrease in parasite viability and 33% reduction in female oviposition. Other observed phenotypes were a decrease in the proliferation rate of both male and female worms and their gonads, and reduced female lipid and vitelline droplets that are markers for well-developed vitellaria. Impairment of female worms' vitellaria in SmLINC156349-silenced worms led to egg development deficiency. All those results demonstrate the great potential of the tools and methods to characterize lncRNAs as potential new therapeutic targets. Further, we discuss the challenges and limitations of current methods for studying lncRNAs in parasites and possible solutions to overcome them, and we highlight the future directions of this exciting field.

9.
Sci Rep, v. 11, 21671, nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3987

RESUMO

Trypanosoma cruzi—the causative agent of Chagas disease—like other kinetoplastids, relies mostly on post-transcriptional mechanisms for regulation of gene expression. However, trypanosomatids undergo drastic changes in nuclear architecture and chromatin structure along their complex life cycle which, combined with a remarkable set of reversible histone post-translational modifications, indicate that chromatin is also a target for control of gene expression and differentiation signals in these organisms. Chromatin-modifying enzymes have a direct impact on gene expression programs and DNA metabolism. In this work, we have investigated the function of T. cruzi histone deacetylase 4 (TcHDAC4). We show that, although TcHDAC4 is not essential for viability, metacyclic trypomastigote TcHDAC4 null mutants show a thin cell body and a round and less condensed nucleus located very close to the kinetoplast. Sixty-four acetylation sites were quantitatively evaluated, which revealed H2AT85ac, H4K10ac and H4K78ac as potential target sites of TcHDAC4. Gene expression analyses identified three chromosomes with overrepresented regions of differentially expressed genes in the TcHDAC4 knockout mutant compared with the wild type, showing clusters of either up or downregulated genes. The adjacent chromosomal location of some of these genes indicates that TcHDAC4 participates in gene expression regulation during T. cruzi differentiation.

10.
Nat Commun, v. 12, 6181, out. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3981

RESUMO

The rhesus macaque provides a unique model of acquired immunity against schistosomes, which afflict >200 million people worldwide. By monitoring bloodstream levels of parasite-gut-derived antigen, we show that from week 10 onwards an established infection with Schistosoma mansoni is cleared in an exponential manner, eliciting resistance to reinfection. Secondary challenge at week 42 demonstrates that protection is strong in all animals and complete in some. Antibody profiles suggest that antigens mediating protection are the released products of developing schistosomula. In culture they are killed by addition of rhesus plasma, collected from week 8 post-infection onwards, and even more efficiently with post-challenge plasma. Furthermore, cultured schistosomula lose chromatin activating marks at the transcription start site of genes related to worm development and show decreased expression of genes related to lysosomes and lytic vacuoles involved with autophagy. Overall, our results indicate that enhanced antibody responses against the challenge migrating larvae mediate the naturally acquired protective immunity and will inform the route to an effective vaccine.

11.
Sci Rep, v. 11, 16816, ago. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3925

RESUMO

Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the most used, fast, and reproducible method to confirm large-scale gene expression data. The use of stable reference genes for the normalization of RT-qPCR assays is recognized worldwide. No systematic study for selecting appropriate reference genes for usage in RT-qPCR experiments comparing gene expression levels at different Schistosoma mansoni life-cycle stages has been performed. Most studies rely on genes commonly used in other organisms, such as actin, tubulin, and GAPDH. Therefore, the present study focused on identifying reference genes suitable for RT-qPCR assays across six S. mansoni developmental stages. The expression levels of 25 novel candidates that we selected based on the analysis of public RNA-Seq datasets, along with eight commonly used reference genes, were systematically tested by RT-qPCR across six developmental stages of S. mansoni (eggs, miracidia, cercariae, schistosomula, adult males and adult females). The stability of genes was evaluated with geNorm, NormFinder and RefFinder algorithms. The least stable candidate reference genes tested were actin, tubulin and GAPDH. The two most stable reference genes suitable for RT-qPCR normalization were Smp_101310 (Histone H4 transcription factor) and Smp_196510 (Ubiquitin recognition factor in ER-associated degradation protein 1). Performance of these two genes as normalizers was successfully evaluated with females maintained unpaired or paired to males in culture for 8 days, or with worm pairs exposed for 16 days to double-stranded RNAs to silence a protein-coding gene. This study provides reliable reference genes for RT-qPCR analysis using samples from six different S. mansoni life-cycle stages.

12.
PLoS Negl Trop Dis ; 14(8): e0008424, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745093

RESUMO

Zika virus (ZIKV) causes congenital Zika syndrome (CZS), which is characterized by fetal demise, microcephaly and other abnormalities. ZIKV in the pregnant woman circulation must cross the placental barrier that includes fetal endothelial cells and trophoblasts, in order to reach the fetus. CZS occurs in ~1-40% of cases of pregnant women infected by ZIKV, suggesting that mothers' infection by ZIKV during pregnancy is not deterministic for CZS phenotype in the fetus. Therefore, other susceptibility factors might be involved, including the host genetic background. We have previously shown that in three pairs of dizygotic twins discordant for CZS, neural progenitor cells (NPCs) from the CZS-affected twins presented differential in vitro ZIKV susceptibility compared with NPCs from the non-affected. Here, we analyzed human-induced-pluripotent-stem-cell-derived (hiPSC-derived) trophoblasts from these twins and compared by RNA-Seq the trophoblasts from CZS-affected and non-affected twins. Following in vitro exposure to a Brazilian ZIKV strain (ZIKVBR), trophoblasts from CZS-affected twins were significantly more susceptible to ZIKVBR infection when compared with trophoblasts from the non-affected. Transcriptome profiling revealed no differences in gene expression levels of ZIKV candidate attachment factors, IFN receptors and IFN in the trophoblasts, either before or after ZIKVBR infection. Most importantly, ZIKVBR infection caused, only in the trophoblasts from CZS-affected twins, the downregulation of genes related to extracellular matrix organization and to leukocyte activation, which are important for trophoblast adhesion and immune response activation. In addition, only trophoblasts from non-affected twins secreted significantly increased amounts of chemokines RANTES/CCL5 and IP10 after infection with ZIKVBR. Overall, our results showed that trophoblasts from non-affected twins have the ability to more efficiently activate genes that are known to play important roles in cell adhesion and in triggering the immune response to ZIKV infection in the placenta, and this may contribute to predict protection from ZIKV dissemination into fetuses' tissues.


Assuntos
Expressão Gênica , Trofoblastos/metabolismo , Gêmeos Dizigóticos , Infecção por Zika virus/congênito , Quimiocinas/metabolismo , Matriz Extracelular , Feminino , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas , Lactente , Gravidez , Complicações Infecciosas na Gravidez/genética , Complicações Infecciosas na Gravidez/virologia , Trofoblastos/virologia , Zika virus , Infecção por Zika virus/genética
13.
PLoS Negl Trop Dis ; 14(7): e0008332, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609727

RESUMO

Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935, which was used to treat schistosomula and adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-Seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/ultraestrutura , Esquistossomose mansoni/tratamento farmacológico , Animais , Anti-Helmínticos/farmacologia , Resistência a Medicamentos , Microscopia Eletrônica de Varredura , Oviposição/efeitos dos fármacos , Praziquantel/farmacologia , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/patologia
14.
Phytopathology ; 110(11): 1751-1755, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32520631

RESUMO

Xylella fastidiosa subsp. pauca, once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D, and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x, and Hib4 isolated, respectively, from coffee, plum, and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.


Assuntos
Citrus , Hibiscus , Prunus domestica , Xylella , Argentina , Brasil , Café , Doenças das Plantas , Xylella/genética
15.
Sci Rep, v. 10, 21565, dez. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3407

RESUMO

Schistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects more than 200 million people worldwide. There is only one drug indicated for treatment, praziquantel, which may lead to parasite resistance emergence. The ribonucleoside analogue 5-azacytidine (5-AzaC) is an epigenetic drug that inhibits S. mansoni oviposition and ovarian development through interference with parasite transcription, translation and stem cell activities. Therefore, studying the downstream pathways affected by 5-AzaC in S. mansoni may contribute to the discovery of new drug targets. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein coding potential that have been involved in reproduction, stem cell maintenance and drug resistance. We have recently published a catalog of lncRNAs expressed in S. mansoni life-cycle stages, tissues and single cells. However, it remains largely unknown if lncRNAs are responsive to epigenetic drugs in parasites. Here, we show by RNA-Seq re-analyses that hundreds of lncRNAs are differentially expressed after in vitro 5-AzaC treatment of S. mansoni females, including intergenic, antisense and sense lncRNAs. Many of these lncRNAs belong to co-expression network modules related to male metabolism and are also differentially expressed in unpaired compared with paired females and ovaries. Half of these lncRNAs possess histone marks at their genomic loci, indicating regulation by histone modification. Among a selected set of 8 lncRNAs, half of them were validated by RT-qPCR as differentially expressed in females, and some of them also in males. Interestingly, these lncRNAs are also expressed in other life-cycle stages. This study demonstrates that many lncRNAs potentially involved with S. mansoni reproductive biology are modulated by 5-AzaC and sheds light on the relevance of exploring lncRNAs in response to drug treatments in parasites.

16.
PLoS Negl Trop Dis, v. 14, n. 8, e0008424, ago. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3123

RESUMO

Zika virus (ZIKV) causes congenital Zika syndrome (CZS), which is characterized by fetal demise, microcephaly and other abnormalities. ZIKV in the pregnant woman circulation must cross the placental barrier that includes fetal endothelial cells and trophoblasts, in order to reach the fetus. CZS occurs in ~1–40% of cases of pregnant women infected by ZIKV, suggesting that mothers’ infection by ZIKV during pregnancy is not deterministic for CZS phenotype in the fetus. Therefore, other susceptibility factors might be involved, including the host genetic background. We have previously shown that in three pairs of dizygotic twins discordant for CZS, neural progenitor cells (NPCs) from the CZS-affected twins presented differential in vitro ZIKV susceptibility compared with NPCs from the non-affected. Here, we analyzed human-induced-pluripotent-stem-cell-derived (hiPSC-derived) trophoblasts from these twins and compared by RNA-Seq the trophoblasts from CZS-affected and non-affected twins. Following in vitro exposure to a Brazilian ZIKV strain (ZIKVBR), trophoblasts from CZS-affected twins were significantly more susceptible to ZIKVBR infection when compared with trophoblasts from the non-affected. Transcriptome profiling revealed no differences in gene expression levels of ZIKV candidate attachment factors, IFN receptors and IFN in the trophoblasts, either before or after ZIKVBR infection. Most importantly, ZIKVBR infection caused, only in the trophoblasts from CZS-affected twins, the downregulation of genes related to extracellular matrix organization and to leukocyte activation, which are important for trophoblast adhesion and immune response activation. In addition, only trophoblasts from non-affected twins secreted significantly increased amounts of chemokines RANTES/CCL5 and IP10 after infection with ZIKVBR. Overall, our results showed that trophoblasts from non-affected twins have the ability to more efficiently activate genes that are known to play important roles in cell adhesion and in triggering the immune response to ZIKV infection in the placenta, and this may contribute to predict protection from ZIKV dissemination into fetuses’ tissues.

17.
Plos Negl Trop Dis, v. 14, n. 7, e0008332, jul. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3085

RESUMO

Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935, which was used to treat schistosomula and adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-Seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors.

18.
Phytopathology, v. 110, n. 11, p. 1751-1755, jun. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3065

RESUMO

Xylella fastidiosa subsp. pauca , once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x and Hib4 isolated, respectively, from coffee, plum and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.

19.
Hum Mol Genet, v. 29, n. 9, p. 1465-1475, abr. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3007

RESUMO

Amyotrophic Lateral Sclerosis type 8 (ALS8) is an autosomal dominant form of ALS, which is caused by pathogenic variants in the VAPB gene. Here we investigated five ALS8 patients, classified as ‘severe’ and ‘mild’ from a gigantic Brazilian kindred, carrying the same VAPB mutation but displaying different clinical courses. Copy Number Variation (CNV) and Whole Exome Sequencing (WES) analyses in such individuals ruled out previously described genetic modifiers of pathogenicity. After deriving induced pluripotent stem cells (iPSCs) for each patient (N=5) and controls (N=3), motor neurons were differentiated, and high-throughput RNA-Seq gene expression measurements were performed. Functional cell death and oxidative metabolism assays were also carried out in patients’ iPSC-derived motor neurons. The degree of cell death and mitochondrial oxidative metabolism were similar in iPSC-derived motor neurons from mild patients and controls, and were distinct from those of severe patients. Similar findings were obtained when RNA-Seq from such cells was performed. Overall, 43 genes were upregulated and 66 downregulated in the two mild ALS8 patients when compared with severe ALS8 individuals and controls. Interestingly, significantly enriched pathways found among differentially expressed genes, such as protein translation and protein targeting to endoplasmic reticulum (ER), are known to be associated with neurodegenerative processes. Taken together, the mitigating mechanisms here presented appear to maintain motor neuron survival by keeping translational activity and protein targeting to ER in such cells. As ALS8 physiopathology has been associated with proteostasis mechanisms in ER–mitochondria contact sites, such differentially expressed genes appear to relate to the bypass of VAPB deficiency.

20.
Parasit Vectors, v. 13, 140, mar. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2975

RESUMO

Background: Schistosomiasis chemotherapy is largely based on praziquantel (PZQ). Although PZQ is very safe and tolerable, it does not prevent reinfection and emerging resistance is a primary concern. Recent studies have shown that the targeting of epigenetic machinery in Schistosoma mansoni may result in severe alterations in parasite development, leading to death. This new route for drug discovery in schistosomiasis has focused on classes of histone deacetylases (HDACs) and histone acetyltransferases (HATs) as epigenetic drug targets. Schistosoma histone demethy-lases also seem to be important in the transition of cercariae into schistosomula, as well as sexual diferentiation in adult worms. Methods: The Target-Pathogen database and molecular docking assays were used to prioritize the druggability of S. mansoni histone demethylases. The transcription profle of Smp_03400 was re-analyzed using available databases. The efect of GSK-J4 inhibitor in schistosomula and adult worms’ motility/viability/oviposition was assessed by in vitro assays. Ultrastructural analysis was performed on adult worms exposed to GSK-J4 by scanning electron microscopy, while internal structures and muscle fber integrity was investigated by confocal microscopy after Langeron's carmine or phalloidin staining. Results: The present evaluation of the potential druggability of 14 annotated S. mansoni demethylase enzymes identifed the S. mansoni ortholog of human KDM6A/UTX (Smp_034000) as the most suitable druggable target. In silico analysis and molecular modeling indicated the potential for cofactor displacement by the chemical probe GSK-J4. Our re-analysis of transcriptomic data revealed that Smp_034000 expression peaks at 24 h in newly transformed schisto somula and 5-week-old adult worms. Moreover, this gene was highly expressed in the testes of mature male worms compared to the rest of the parasite body. In in vitro schistosome cultures, treatment with GSK-J4 produced strikingefects on schistosomula mortality and adult worm motility and mortality, as well as egg oviposition, in a dose- and time-dependent manner. Unexpectedly, western blot assays did not demonstrate overall modulation of H3K27me3 levels in response to GSK-J4. Confocal and scanning electron microscopy revealed the loss of original features in muscle fibers and alterations in cell-cell contact following GSK-J4 treatment. Conclusions GSK-J4 presents promising potential for antischistosomal control; however, the underlying mechanisms warrant further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA