Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Steroids ; 177: 108948, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871605

RESUMO

Beclomethasone dipropionate (1) is a synthetic corticosteroid with anti-inflammatory, antipruritic, and anti-allergy properties. It is widely used to treat asthma, allergic rhinitis, and dermatoses. However, existing synthetic routes to this active pharmaceutical ingredient (API) contain steps resulting in low and/or inconsistent yields, and use obsolete reagents. Such inconsistencies coupled with a lack of reliable experimental data makes laboratory-scale and large-scale synthesis of this API difficult and time-consuming. In this paper, we report a practical and scalable approach to synthesize 1 from the readily available steroidal intermediate, 16ß-methyl epoxide (3, DB-11). A gram-scale to kilogram-scale synthesis of 1 was achieved with 82% yield, using a cost-effective and scalable methodology. Selective propionylation of the hydroxyl groups at C17 and C21 demonstrate the fact that this approach can be conveniently implemented in fine chemical industries.


Assuntos
Beclometasona/síntese química , Beclometasona/química , Conformação Molecular , Estereoisomerismo
2.
Nat Prod Res ; 35(21): 4169-4172, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32223339

RESUMO

During the last three decades, studies of linamarin extracted from cassava have received increased attention due to the presence of high cyanogenic compounds in these extracts. The methods that are utilized to isolate linamarin are either tedious or use acidic conditions resulting in poor yields. In this study, a novel cryocooled method of extraction has been developed to isolate linamarin from Cassava root peel. Approximately 18 g of linamarin was isolated from 1 kg of fresh Cassava root peel, which is the highest amount reported to date. Linamarin was fully characterized using NMR, IR and LCMS. The anti-cancer properties of pure linamarin and Cassava crude extract were evaluated by a comprehensive cytotoxic assay, using MCF-7, HepG2, NCI H-292, AN3CA and MRC-5 cell lines. The crude extract showed higher cytotoxicity compared to pure linamarin. The results of the biological evaluation are comparable to other reported studies in the literature.


Assuntos
Manihot , Nitrilas , Verduras
3.
RSC Adv ; 9(37): 21249-21257, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521322

RESUMO

Hematite nanoparticles have a broad range of outstanding applications such as in wastewater treatment, electrolytic studies, and photoelectrochemical and superparamagnetic applications. Therefore, the development of facile and novel methods to synthesize hematite nanoparticles using low-cost raw materials is an important and timely requirement. In this study, we have developed a facile economical route to synthesize hematite nanoparticles, directly from the naturally occurring material laterite. Laterite is a rock that is rich in Fe and Al with extensive distribution in large mineable quantities in many countries around the world, though not yet utilized for major industrial applications. In this method, ferric ions in the laterite were leached out using acid and the solution obtained was hydrolyzed with slow-release hydroxyl ions which were acquired by aqueous decomposition of urea. The resulted precursor was calcined to obtain hematite nanoparticles. Characterization data shows that the final product is comprised of spherical hematite nanoparticles with a narrow particle size vs. frequency distribution with an average particle diameter of 35 nm. The synthesized product has a purity of over 98%. Furthermore, the synthesized nanoparticles show an excellent adsorption percentage as high as 70%, even when the initial dye concentration in water is 5000 ppm and the amount of material is minimal, towards acid dyes which are excessively used in textile based industries. Such acid dyes are a threat to the environment when they are released into water bodies by industries in massive quantities. Therefore synthesized hematite nanoparticles are ideal to treat dye wastewater in industrial effluents because such nanoparticles are low cost and economical, and the synthesis procedure is rather facile and effective.

4.
Chem Cent J ; 12(1): 93, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30116915

RESUMO

Palladium nanoparticles display fascinating electronic, optical and catalytic properties, thus they can be used for various applications such as sensor fabrication. Conducting polymers such as polyaniline have also been widely used in sensor technology due to its cost effectiveness, versatility, and ease of synthesis. In this research, attention was given to unify the exceptional properties of these two materials and construct palladium nanoparticle coated polyaniline films to detect hydrogen and moisture. Electrochemical polymerization of aniline was carried out on gold sputtered epoxy resin boards. Polyaniline film was generated across a gap of 0.2 mm created by a scratch made on the gold coating prior to electrochemical polymerization. A palladium nanoparticle dispersion was prepared using sonochemical reduction method and coated on to polyaniline film using drop-drying technique. Polyaniline only films were also fabricated for comparative analysis. Sensitivity of films towards humidity and hydrogen was evaluated using impedance spectroscopy in the presence of the respective species. According to the results, polyaniline films exhibited an impedance drop in the presence of humidity and the response was significantly improved once palladium nanoparticles were incorporated. Interestingly, polyaniline only films did not respond to hydrogen. Nevertheless, palladium nanoparticle coated polyaniline films exhibited remarkable response towards hydrogen.

5.
Int J Biomater ; 2017: 1391298, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694826

RESUMO

Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.

6.
Carbohydr Polym ; 157: 739-747, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987986

RESUMO

Chitosan nanocomposite thin films were fabricated by incorporating MgO nanoparticles to significantly improve its physical properties for potential packaging applications. A novel in-situ method was developed to synthesise spherical shaped MgO nanoparticles by heat-treating magnesium carbonate/poly(methyl methacrylate) (PMMA) composite precursor. Optimum mechanical properties of chitosan composites were yielded at 5 (w/w%) of MgO concentration, where tensile stress and elastic modulus significantly improved by 86% and 38%, respectively, compared to those of pure chitosan films. These improvements are due to the interaction of hydroxyl and amine groups of chitosan with MgO as confirmed by FTIR spectroscopy. Fracture surface morphology indicated the interplay between MgO dispersion and aggregation on the mechanical properties at different MgO concentrations. Furthermore, the chitosan/MgO nanocomposites displayed remarkable thermal stability, flame retardant properties (satisfied V0 rating according to the UL-94 standards), UV shielding and moisture barrier properties, which could certainly add value to the packaging material.

7.
Nanoscale Res Lett ; 10(1): 486, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26676997

RESUMO

Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

8.
J Nanosci Nanotechnol ; 11(12): 11011-4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22409045

RESUMO

This paper presents direct growth of horizontally-aligned carbon nanotubes (CNTs) between two predefined various inter-spacing up to tens of microns of electrodes (pads) and its use as CNT field-effect transistors (CNT-FETs). Using the conventional photolithography technique followed by thin film evaporation and lift off, the catalytic electrodes (pads) were prepared, consisting of Pt, Al and Fe triple layers on SiO2/Si substrate. The grown CNTs were horizontally-aligned across the catalytic electrodes on the modified gold image furnace hot stage (thermal CVD) at 800 degrees C by using an alcohol vapor as the carbon source. Scanning and transmission electron microcopies (SEM/TEM) were used to observe the structure, growth direction and density of CNTs, while Raman spectrum analysis was used to indicate the degree of amorphous impurity and diameter of CNTs. Both single- and multi-wall CNTs with diameters of 1.1-2.2 nm were obtained and the CNT density was controlled by thickness of Fe catalytic layer. Following horizontally-aligned growth of CNTs, the electrical properties of back-gate CNT-FETs were measured and showd p-type conduction behaviors of FET.

9.
Nanotechnology ; 20(10): 105201, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19417511

RESUMO

We report the direct measurement of electrical transport through rod-like polymer molecules, of poly(ethyl propiolate) (PEP), utilizing single walled carbon nanotubes (SWNTs) as electrodes. The electrical properties of the devices were measured (i) before cutting a SWNT, (ii) when a SWNT was cut and (iii) after PEP deposition into the nanoscale gap in a cut SWNT. The gate-dependent electrical properties showed a reduction in current from I(on) = 2.4 x 10(-7) A for SWNT devices to I(on) = 3.6 x 10(-9) A for PEP bridge devices, both with the ON/OFF ratio of 10(4). Similarly, metallic SWNT devices showed a reduction in current from a few hundreds of microA for a SWNT device to a few nA for a PEP-SWNT structure. The current density of a single PEP molecule is 10(5)-10(6) A cm(-2), which is relatively high, indicating that the PEP molecule can carry significant current. Use of SWNT electrodes was seen to be an effective method of contacting PEP nanorods to facilitate electrical measurements.


Assuntos
Alcinos/química , Cristalização/métodos , Teste de Materiais/métodos , Microeletrodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Propionatos/química , Condutividade Elétrica , Transporte de Elétrons , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
10.
Nanotechnology ; 19(45): 455608, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21832785

RESUMO

A simple, catalyst-free growth method for vertically aligned, highly crystalline iron oxide (α-Fe(2)O(3)) wires and needles is reported. Wires are grown by the thermal oxidation of iron foils. Growth properties are studied as a function of temperature, growth time and oxygen partial pressure. The size, morphology and density of the nanostructures can be controlled by varying growth temperature and time. Oxygen partial pressure shows no effect on the morphology of resulting nanostructures, although the oxide thickness increases with oxygen partial pressure. Additionally, by using sputtered iron films, the possibility of growth and patterning on a range of different substrates is demonstrated. Growth conditions can be adapted to less tolerant substrates by using lower temperatures and longer growth time. The results provide some insight into the mechanism of growth.

11.
J Chem Phys ; 120(2): 1055-8, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-15267942

RESUMO

Since carbon nanotubes and onions were discovered, many methods have been proposed for their production. For applications the main requirements are low capital cost, high purity of the produced material, simplicity of technique, and its potential for scale up. Recently a cathodic arc between two graphitic electrodes immersed in liquids has been demonstrated to be a simple method to produce carbon nanoparticles such as nanotubes and onions. In this paper high-resolution transmission electron microscopy is employed to examine the shape of the nanoparticles and the purity of the final material produced under various conditions. In this study we have used an arc discharge in two different liquids--liquid nitrogen and distilled water--and we have changed the grade of the carbon electrodes. The variety in structure, shape, and size of the produced particles is discussed in line with a model proposed to describe the physical process.

12.
Phys Rev Lett ; 90(15): 155504, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12732047

RESUMO

Ultraviolet-visible absorption measurements of high purity and well separated carbon onion samples are reported. The results show that, after purification, absorption features from carbon onions match well with the interstellar UV spectrum. The measurements show that the absorption peak position remains constant at 4.55+/-0.1 microm(-1), and the width varies from 1.2-1.6 microm(-1), a key feature of the interstellar spectrum. The similarities between the experimental and observed absorption spectra indicate that carbon onions are very strong candidates for the origin of the UV interstellar absorption peak at 4.6 microm(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...