Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 38(10): 1938-1951, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37608600

RESUMO

STUDY QUESTION: Does a chemically defined maturation medium supplemented with FGF2, LIF, and IGF1 (FLI) improve in vitro maturation (IVM) of cumulus-oocyte complexes (COCs) obtained from children, adolescents, and young adults undergoing ovarian tissue cryopreservation (OTC)? SUMMARY ANSWER: Although FLI supplementation did not increase the incidence of oocyte meiotic maturation during human IVM, it significantly improved quality outcomes, including increased cumulus cell expansion and mitogen-activated protein kinase (MAPK) expression as well as enhanced transzonal projection retraction. WHAT IS KNOWN ALREADY: During OTC, COCs, and denuded oocytes from small antral follicles are released into the processing media. Recovery and IVM of these COCs is emerging as a complementary technique to maximize the fertility preservation potential of the tissue. However, the success of IVM is low, especially in the pediatric population. Supplementation of IVM medium with FLI quadruples the efficiency of pig production through improved oocyte maturation, but whether a similar benefit occurs in humans has not been investigated. STUDY DESIGN, SIZE, DURATION: This study enrolled 75 participants between January 2018 and December 2021 undergoing clinical fertility preservation through the Fertility & Hormone Preservation & Restoration Program at the Ann & Robert H. Lurie Children's Hospital of Chicago. Participants donated OTC media, accumulated during tissue processing, for research. PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants who underwent OTC and include a pediatric population that encompassed children, adolescents, and young adults ≤22 years old. All participant COCs and denuded oocytes were recovered from media following ovarian tissue processing. IVM was then performed in either a standard medium (oocyte maturation medium) or one supplemented with FLI (FGF2; 40 ng/ml, LIF; 20 ng/ml, and IGF1; 20 ng/ml). IVM outcomes included meiotic progression, cumulus cell expansion, transzonal projection retraction, and detection of MAPK protein expression. MAIN RESULTS AND THE ROLE OF CHANCE: The median age of participants was 6.3 years, with 65% of them classified as prepubertal by Tanner staging. Approximately 60% of participants had been exposed to chemotherapy and/or radiation prior to OTC. On average 4.7 ± 1 COCs and/or denuded oocytes per participant were recovered from the OTC media. COCs (N = 41) and denuded oocytes (N = 29) were used for IVM (42 h) in a standard or FLI-supplemented maturation medium. The incidence of meiotic maturation was similar between cohorts (COCs: 25.0% vs 28.6% metaphase II arrested eggs in Control vs FLI; denuded oocytes: 0% vs 5.3% in Control vs FLI). However, cumulus cell expansion was 1.9-fold greater in COCs matured in FLI-containing medium relative to Controls and transzonal projection retraction was more pronounced (2.45 ± 0.50 vs 1.16 ± 0.78 projections in Control vs FLIat 16 h). Additionally, MAPK expression was significantly higher in cumulus cells obtained from COCs matured in FLI medium for 16-18 h (chemiluminescence corrected area 621,678 vs 2,019,575 a.u., P = 0.03). LIMITATIONS, REASONS FOR CAUTION: Our samples are from human participants who exhibited heterogeneity with respect to age, diagnosis, and previous treatment history. Future studies with larger sample sizes, including adult participants, are warranted to determine the mechanism by which FLI induces MAPK expression and activation. Moreover, studies that evaluate the developmental competence of eggs derived from FLI treatment, including assessment of embryos as outcome measures, will be required prior to clinical translation. WIDER IMPLICATIONS OF THE FINDINGS: FLI supplementation may have a conserved beneficial effect on IVM for children, adolescents, and young adults spanning the agricultural setting to clinical fertility preservation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Department of Obstetrics and Gynecology startup funds (F.E.D.), Department of Surgery Faculty Practice Plan Grant and the Fertility & Hormone Preservation & Restoration Program at the Ann & Robert H. Lurie Children's Hospital of Chicago (M.M.L. and E.E.R.). M.M.L. is a Gesualdo Foundation Research Scholar. Y.Y.'s research is supported by the internal research funds provided by Colorado Center of Reproductive Medicine. Y.Y., L.D.S., R.M.R., and R.S.P. have a patent pending for FLI. The remaining authors have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Técnicas de Maturação in Vitro de Oócitos , Gravidez , Feminino , Adolescente , Humanos , Criança , Animais , Suínos , Adulto Jovem , Adulto , Fator 2 de Crescimento de Fibroblastos/metabolismo , Oócitos/metabolismo , Hormônios , Suplementos Nutricionais , Fator de Crescimento Insulin-Like I/metabolismo
2.
Biol Reprod ; 108(1): 5-22, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36136744

RESUMO

Folliculogenesis is a tightly coordinated process essential for generating a fertilization-competent gamete while also producing gonadal hormones that sustain endocrine function. In vitro follicle growth systems have been critical to our understanding of key events in folliculogenesis, such as gonadotropin-independent and dependent growth, steroid hormone production, and oocyte growth and maturation (cytoplasmic and meiotic). Although there are several successful follicle culture strategies, the following protocol details an encapsulated in vitro follicle growth (eIVFG) system for use with mouse ovarian follicles. Encapsulated IVFG is performed with alginate hydrogels, which are biologically inert, maintains cell-to-cell interactions between granulosa cells and the oocyte, and preserves follicle architecture as found in the ovary. The system supports follicle growth, development, and differentiation from the early primary follicle to the antral follicle stage. Moreover, post-folliculogenesis events including meiotic maturation, ovulation, and luteinization are also supported. Importantly, the culture of secondary follicles has successfully resulted in viable pups after blastocyst transfer. This alginate-based eIVFG system is versatile and has broad applications as a tool for interrogating the fundamental biology of the ovarian follicle in a controlled manner, a screening platform for toxicity and bioactivity, and a potential fertility preservation method for endangered species as well as humans.


Assuntos
Oogênese , Folículo Ovariano , Humanos , Feminino , Camundongos , Animais , Oócitos , Gonadotropinas , Alginatos
4.
Trends Cell Biol ; 32(4): 311-323, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34922803

RESUMO

In most animals, the oocyte is the largest cell by volume. The oocyte undergoes a period of large-scale growth during its development, prior to fertilization. At first glance, tissues that support the development of the oocyte in different organisms have diverse cellular characteristics that would seem to prohibit functional comparisons. However, these tissues often act with a common goal of establishing dynamic forms of two-way communication with the oocyte. We propose that this bidirectional communication between oocytes and support cells is a universal phenomenon that can be directly compared across species. Specifically, we highlight fruit fly and mouse oogenesis to demonstrate that similarities and differences in these systems should be used to inform and design future experiments in both models.


Assuntos
Drosophila , Oogênese , Animais , Comunicação , Humanos , Camundongos , Oócitos
5.
Mol Hum Reprod ; 27(11)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34581808

RESUMO

The mechanism of conversion of the human sperm basal body to a centrosome after fertilization, and its role in supporting human early embryogenesis, has not been directly addressed so far. Using proteomics and immunofluorescence studies, we show here that the human zygote inherits a basal body enriched with centrosomal proteins from the sperm, establishing the first functional centrosome of the new organism. Injection of human sperm tails containing the basal body into human oocytes followed by parthenogenetic activation, showed that the centrosome contributes to the robustness of the early cell divisions, increasing the probability of parthenotes reaching the compaction stage. In the absence of the sperm-derived centrosome, pericentriolar material (PCM) components stored in the oocyte can form de novo structures after genome activation, suggesting a tight PCM expression control in zygotes. Our results reveal that the sperm basal body is a complex organelle which converts to a centrosome after fertilization, ensuring the early steps of embryogenesis and successful compaction. However, more experiments are needed to elucidate the exact molecular mechanisms of centrosome inheritance in humans.


Assuntos
Corpos Basais/metabolismo , Blastocisto/metabolismo , Centrossomo/metabolismo , Injeções de Esperma Intracitoplásmicas , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Adolescente , Adulto , Desenvolvimento Embrionário , Feminino , Células HeLa , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Gravidez , Adulto Jovem
6.
Genes (Basel) ; 12(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440360

RESUMO

The extracellular matrix (ECM) is a major component of the ovarian stroma. Collagen and hyaluronan (HA) are critical ovarian stromal ECM molecules that undergo age-dependent changes in the mouse and human. How these matrix components are regulated and organized in other mammalian species with reproductive characteristics similar to women such as cows and pigs, has not been systematically investigated. Therefore, we performed histological, molecular, and biochemical analyses to characterize collagen and HA in these animals. Bovine ovaries had more collagen than porcine ovaries when assessed biochemically, and this was associated with species-specific differences in collagen gene transcripts: Col3a1 was predominant in cow ovaries while Col1a1 was predominant in pig ovaries. We also observed more HA in the porcine vs. bovine ovary. HA was distributed across three molecular weight ranges (<100 kDa, 100-300 kDa, and >300 kDa) in ovarian tissue and follicular fluid, with tissue having more >300 kDa HA than the other two ranges. Transcripts for HA synthesis and degradation enzymes, Has3 and Hyal2, respectively, were predominant in cow ovaries, whereas Has2, Kiaa1199, and Tmem2 tended to be predominant in pig ovaries. Together, our findings have implications for the composition, organization, and regulation of the ovarian ECM in large mammalian species, including humans.


Assuntos
Bovinos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Ácido Hialurônico/metabolismo , Ovário/metabolismo , Suínos , Animais , Bovinos/anatomia & histologia , Bovinos/metabolismo , Colágeno/genética , Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica , Hialuronan Sintases/metabolismo , Ácido Hialurônico/genética , Hialuronoglucosaminidase/metabolismo , Camundongos , Peso Molecular , Ovário/citologia , Especificidade da Espécie , Coloração e Rotulagem , Suínos/anatomia & histologia , Suínos/metabolismo , Distribuição Tecidual
7.
Biol Reprod ; 104(5): 1058-1070, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33524104

RESUMO

Oocytes are highly radiosensitive, so agents that prevent radiation-induced ovarian follicle destruction are important fertility preservation strategies. A previous study in rhesus macaques demonstrated that ovarian treatment with antiapoptotic agents, sphingosine-1-phosphate (S1P) and FTY720, its long-acting mimetic, preserved follicles following a single dose of 15 Gy X-ray radiation, and live offspring were obtained from FTY720-treated animals. However, it is unknown whether these antiapoptotic agents also protected the ovarian stroma from late effects of radiation, including vascular damage and fibrosis. Using ovarian histological sections from this study, we evaluated the vasculature and extracellular matrix in the following cohorts: vehicle + sham irradiation, vehicle + irradiation (OXI), S1P + irradiation (S1P), and FTY720 + irradiation (FTY720). One ovary from each animal was harvested prior to radiation whereas the contralateral ovary was harvested 10 months post-treatment. We assessed vasculature by immunohistochemistry with a PECAM1 antibody, hyaluronan by a hyaluronan binding protein assay, and collagen by picrosirius red and Masson's trichrome staining. Disorganized vessels were observed in the medulla in the OXI and S1P cohorts relative to the sham, but the vasculature in the FTY720 cohort appeared intact, which may partially explain fertoprotection. There were no differences in the hyaluronan matrix among the cohorts, but there was thickening of the tunica albuginea and fibrosis in the OXI cohort relative to the sham, which was not mitigated by either S1P or FTY720 treatment. Thus, the fertoprotective properties of S1P and FTY720 may be limited given their inability to protect the ovarian stroma against the late effects of radiation-induced fibrosis.


Assuntos
Fibrose/tratamento farmacológico , Cloridrato de Fingolimode/farmacologia , Imunossupressores/farmacologia , Lisofosfolipídeos/farmacologia , Doenças Ovarianas/tratamento farmacológico , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Esfingosina/análogos & derivados , Animais , Feminino , Fibrose/etiologia , Macaca mulatta , Doenças Ovarianas/etiologia , Esfingosina/farmacologia
8.
Aging Cell ; 19(11): e13259, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079460

RESUMO

Fibrosis is a hallmark of aging tissues which often leads to altered architecture and function. The ovary is the first organ to show overt signs of aging, including increased fibrosis in the ovarian stroma. How this fibrosis affects ovarian biomechanics and the underlying mechanisms are unknown. Using instrumental indentation, we demonstrated a quantitative increase in ovarian stiffness, as evidenced by an increase in Young's modulus, when comparing ovaries from reproductively young (6-12 weeks) and old (14-17 months) mice. This ovarian stiffness was dependent on collagen because ex vivo enzyme-mediated collagen depletion in ovaries from reproductively old mice restored their collagen content and biomechanical properties to those of young controls. In addition to collagen, we also investigated the role of hyaluronan (HA) in regulating ovarian stiffness. HA is an extracellular matrix glycosaminoglycan that maintains tissue homeostasis, and its loss can change the biomechanical properties of tissues. The total HA content in the ovarian stroma decreased with age, and this was associated with increased hyaluronidase (Hyal1) and decreased hyaluronan synthase (Has3) expression. These gene expression differences were not accompanied by changes in ovarian HA molecular mass distribution. Furthermore, ovaries from mice deficient in HAS3 were stiffer compared to age-matched WT mice. Our results demonstrate that the ovary becomes stiffer with age and that both collagen and HA matrices are contributing mechanisms regulating ovarian biomechanics. Importantly, the age-associated increase in collagen and decrease in HA are conserved in the human ovary and may impact follicle development and oocyte quality.


Assuntos
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Hialuronan Sintases/metabolismo , Ovário/fisiopatologia , Adulto , Envelhecimento , Animais , Feminino , Humanos , Camundongos
9.
Aging (Albany NY) ; 12(10): 9686-9713, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32407290

RESUMO

Aging is associated with reduced tissue remodeling efficiency and increased fibrosis, characterized by excess collagen accumulation and altered matrix degradation. Ovulation, the process by which an egg is released from the ovary, is one of the most dynamic cycles of tissue wounding and repair. Because the ovary is one of the first organs to age, ovulation and ovarian wound healing is impaired with advanced reproductive age. To test this hypothesis, we induced superovulation in reproductively young and old mice and determined the numbers of eggs ovulated and corpora lutea (CLs), the progesterone producing glands formed post-ovulation. Reproductively old mice ovulated fewer eggs and had fewer CLs relative to young controls. Moreover, reproductively old mice exhibited a greater number of oocytes trapped within CLs and expanded cumulus oocyte complexes within unruptured antral follicles, indicative of failed ovulation. In addition, post-ovulatory tissue remodeling was compromised with age as evidenced by reduced CL vasculature, increased collagen, decreased hyaluronan, decreased cell proliferation and apoptosis, impaired wound healing capacity, and aberrant morphology of the ovarian surface epithelium (OSE). These findings demonstrate that ovulatory dysfunction is an additional mechanism underlying the age-related loss of fertility beyond the reduction of egg quantity and quality.


Assuntos
Envelhecimento/fisiologia , Oócitos/crescimento & desenvolvimento , Ovário/fisiologia , Superovulação/fisiologia , Cicatrização/fisiologia , Animais , Corpo Lúteo/fisiologia , Feminino , Camundongos , Folículo Ovariano/fisiologia
10.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033185

RESUMO

The ovarian stroma, the microenvironment in which female gametes grow and mature, becomes inflamed and fibrotic with age. Hyaluronan is a major component of the ovarian extracellular matrix (ECM), and in other aging tissues, accumulation of low molecular weight (LMW) hyaluronan fragments can drive inflammation. Thus, we hypothesized that LMW hyaluronan fragments contribute to female reproductive aging by stimulating an inflammatory response in the ovarian stroma and impairing gamete quality. To test this hypothesis, isolated mouse ovarian stromal cells or secondary stage ovarian follicles were treated with physiologically relevant (10 or 100 µg/mL) concentrations of 200 kDa LMW hyaluronan. In ovarian stromal cells, acute LMW hyaluronan exposure, at both doses, resulted in the secretion of a predominantly type 2 (Th2) inflammatory cytokine profile as revealed by a cytokine antibody array of conditioned media. Additional qPCR analyses of ovarian stromal cells demonstrated a notable up-regulation of the eotaxin receptor Ccr3 and activation of genes involved in eosinophil recruitment through the IL5-CCR3 signaling pathway. These findings were consistent with an age-dependent increase in ovarian stromal expression of Ccl11, a major CCR3 ligand. When ovarian follicles were cultured in 10 or 100 µg/mL LMW hyaluronan for 12 days, gametes with compromised morphology and impaired meiotic competence were produced. In the 100 µg/mL condition, LMW hyaluronan induced premature meiotic resumption, ultimately leading to in vitro aging of the resulting eggs. Further, follicles cultured in this LMW hyaluronan concentration produced significantly less estradiol, suggesting compromised granulosa cell function. Taken together, these data demonstrate that bioactive LMW hyaluronan fragments may contribute to reproductive aging by driving an inflammatory stromal milieu, potentially through eosinophils, and by directly compromising gamete quality through impaired granulosa cell function.


Assuntos
Células Germinativas/metabolismo , Ácido Hialurônico/metabolismo , Inflamação/metabolismo , Ovário/metabolismo , Células Estromais/metabolismo , Envelhecimento/metabolismo , Animais , Matriz Extracelular/metabolismo , Feminino , Células da Granulosa/metabolismo , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peso Molecular
11.
Biol Reprod ; 100(3): 575-589, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247519

RESUMO

Microtubules are intracellular filaments that define in space and in time a large number of essential cellular functions such as cell division, morphology and motility, intracellular transport and flagella and cilia assembly. They are therefore essential for spermatozoon and oocyte maturation and function, and for embryo development. The dynamic and functional properties of the microtubules are in large part defined by various classes of interacting proteins including MAPs (microtubule associated proteins), microtubule-dependent motors, and severing and modifying enzymes. Multiple mechanisms regulate these interactions. One of them is defined by the high diversity of the microtubules themselves generated by the combination of different tubulin isotypes and by several tubulin post-translational modifications (PTMs). This generates a so-called tubulin code that finely regulates the specific set of proteins that associates with a given microtubule thereby defining the properties and functions of the network. Here we provide an in depth review of the current knowledge on the tubulin isotypes and PTMs in spermatozoa, oocytes, and preimplantation embryos in various model systems and in the human species. We focus on functional implications of the tubulin code for cytoskeletal function, particularly in the field of human reproduction and development, with special emphasis on gamete quality and infertility. Finally, we discuss some of the knowledge gaps and propose future research directions.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Germinativas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Humanos , Microtúbulos/química , Microtúbulos/classificação , Tubulina (Proteína)/classificação , Tubulina (Proteína)/metabolismo
12.
Sci Rep ; 8(1): 15348, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337543

RESUMO

Human fertilization and embryo development involve a wide range of critical processes that determine the successful development of a new organism. Although Assisted Reproduction Technologies (ART) may help solve infertility problems associated to severe male factor, the live birth rate is still low. A high proportion of ART failures occurs before implantation. Understanding the causes for these failures has been difficult due to technical and ethical limitations. Diagnostic procedures on human spermatozoa in particular have been limited to morphology and swimming behaviours while other functional requirements during early development have not been addressed due to the lack of suitable assays. Here, we have established a quantitative system based on the use of Xenopus egg extracts and human spermatozoa. This system provides novel possibilities for the functional characterization of human spermatozoa. Using clinical data we show that indeed this approach offers a set of complementary data for the functional evaluation of spermatozoa from patients.


Assuntos
Citoplasma/química , Infertilidade Masculina/patologia , Oócitos/química , Análise do Sêmen/métodos , Espermatozoides/patologia , Animais , Extratos Celulares/química , Extratos Celulares/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Feminino , Humanos , Técnicas In Vitro , Infertilidade Masculina/diagnóstico , Masculino , Oócitos/citologia , Sêmen/citologia , Sêmen/efeitos dos fármacos , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...