Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Med ; 29(5): 1243-1252, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37188781

RESUMO

We characterized the world's second case with ascertained extreme resilience to autosomal dominant Alzheimer's disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation. Like the APOECh carrier, he had extremely elevated amyloid plaque burden and limited entorhinal Tau tangle burden. He did not carry the APOECh variant but was heterozygous for a rare variant in RELN (H3447R, termed COLBOS after the Colombia-Boston biomarker research study), a ligand that like apolipoprotein E binds to the VLDLr and APOEr2 receptors. RELN-COLBOS is a gain-of-function variant showing stronger ability to activate its canonical protein target Dab1 and reduce human Tau phosphorylation in a knockin mouse. A genetic variant in a case protected from ADAD suggests a role for RELN signaling in resilience to dementia.


Assuntos
Doença de Alzheimer , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Heterozigoto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais
2.
Ophthalmol Sci ; 2(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36213726

RESUMO

Purpose: To test the efficacy of runt-related transcription factor 1 (RUNX1) inhibition with topical nanoemulsion containing Ro5-3335 (eNano-Ro5) in experimental ocular neovascularization. Design: Preclinical experimental study. Participants: In vitro primary culture human retinal endothelial cell (HREC) culture. C57BL/6J 6- to 10-week-old male and female mice. Methods: We evaluated the effect of eNano-Ro5 in cell proliferation, cell toxicity, and migration of HRECs. We used an alkali burn model of corneal neovascularization and a laser-induced model of choroidal neovascularization to test in vivo efficacy of eNano-Ro5 in pathologic angiogenesis in mice. We used mass spectrometry to measure penetration of Ro5-3335 released from the nanoemulsion in ocular tissues. Main Outcome Measures: Neovascular area. Results: RUNX1 inhibition reduced cell proliferation and migration in vitro. Mass spectrometry analysis revealed detectable levels of the active RUNX1 small-molecule inhibitor Ro5-3335 in the anterior and posterior segment of the mice eyes. Topical treatment with eNano-Ro5 significantly reduced corneal neovascularization and improved corneal wound healing after alkali burn. Choroidal neovascularization lesion size and leakage were significantly reduced after treatment with topical eNano-Ro5. Conclusions: Topical treatment with eNano-Ro5 is an effective and viable platform to deliver a small-molecule RUNX1 inhibitor. This route of administration offers advantages that could improve the management and outcomes of these sight-threatening conditions. Topical noninvasive delivery of RUNX1 inhibitor could be beneficial for many patients with pathologic ocular neovascularization.

3.
Am J Pathol ; 191(7): 1193-1208, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894177

RESUMO

Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-ß1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Furina/metabolismo , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Resultado do Tratamento
4.
FASEB J ; 35(2): e21155, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33135824

RESUMO

Runt-related transcription factor 1 (RUNX1) acts as a mediator of aberrant retinal angiogenesis and has been implicated in the progression of proliferative diabetic retinopathy (PDR). Patients with PDR, retinopathy of prematurity (ROP), and wet age-related macular degeneration (wet AMD) have been found to have elevated levels of Tumor Necrosis Factor-alpha (TNF-α) in the eye. In fibrovascular membranes (FVMs) taken from patients with PDR RUNX1 expression was increased in the vasculature, while in human retinal microvascular endothelial cells (HRMECs), TNF-α stimulation causes increased RUNX1 expression, which can be modulated by RUNX1 inhibitors. Using TNF-α pathway inhibitors, we determined that in HRMECs, TNF-α-induced RUNX1 expression occurs via JNK activation, while NF-κB and p38/MAPK inhibition did not affect RUNX1 expression. JNK inhibitors were also effective at stopping high D-glucose-stimulated RUNX1 expression. We further linked JNK to RUNX1 through Activator Protein 1 (AP-1) and investigated the JNK-AP-1-RUNX1 regulatory feedback loop, which can be modulated by VEGF. Additionally, stimulation with TNF-α and D-glucose had an additive effect on RUNX1 expression, which was downregulated by VEGF modulation. These data suggest that the downregulation of RUNX1 in conjunction with anti-VEGF agents may be important in future treatments for the management of diseases of pathologic ocular angiogenesis.


Assuntos
Neovascularização de Coroide/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Retinopatia da Prematuridade/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Degeneração Macular Exsudativa/metabolismo , Animais , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Glucose/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Retina/citologia , Retina/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Am J Pathol ; 191(3): 418-424, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345998

RESUMO

Choroidal neovascularization (CNV) is a prevalent cause of vision loss in patients with age-related macular degeneration. Runt-related transcription factor 1 (RUNX1) has been identified as an important mediator of aberrant retinal angiogenesis in proliferative diabetic retinopathy and its modulation has proven to be effective in curbing pathologic angiogenesis in experimental oxygen-induced retinopathy. However, its role in CNV remains to be elucidated. This study demonstrates RUNX1 expression in critical cell types involved in a laser-induced model of CNV in mice. Furthermore, the preclinical efficacy of Ro5-3335, a small molecule inhibitor of RUNX1, in experimental CNV is reported. RUNX1 inhibitor Ro5-3335, aflibercept-an FDA-approved vascular endothelial growth factor (VEGF) inhibitor, or a combination of both, were administered by intravitreal injection immediately after laser injury. The CNV area of choroidal flatmounts was evaluated by immunostaining with isolectin B4, and vascular permeability was analyzed by fluorescein angiography. A single intravitreal injection of Ro5-3335 significantly decreased the CNV area 7 days after laser injury, and when combined with aflibercept, reduced vascular leakage more effectively than aflibercept alone. These data suggest that RUNX1 inhibition alone or in combination with anti-VEGF drugs may be a new therapy upon further clinical validation for patients with neovascular age-related macular degeneration.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização de Coroide/tratamento farmacológico , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fatores de Crescimento do Endotélio Vascular
6.
Sci Rep ; 10(1): 20554, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257736

RESUMO

Proliferative vitreoretinopathy (PVR) is the leading cause of retinal detachment surgery failure. Despite significant advances in vitreoretinal surgery, it still remains without an effective prophylactic or therapeutic medical treatment. After ocular injury or retinal detachment, misplaced retinal cells undergo epithelial to mesenchymal transition (EMT) to form contractile membranes within the eye. We identified Runt-related transcription factor 1 (RUNX1) as a gene highly expressed in surgically-removed human PVR specimens. RUNX1 upregulation was a hallmark of EMT in primary cultures derived from human PVR membranes (C-PVR). The inhibition of RUNX1 reduced proliferation of human C-PVR cells in vitro, and curbed growth of freshly isolated human PVR membranes in an explant assay. We formulated Ro5-3335, a lipophilic small molecule RUNX1 inhibitor, into a nanoemulsion that when administered topically curbed the progression of disease in a novel rabbit model of mild PVR developed using C-PVR cells. Mass spectrometry analysis detected 2.67 ng/mL of Ro5-3335 within the vitreous cavity after treatment. This work shows a critical role for RUNX1 in PVR and supports the feasibility of targeting RUNX1 within the eye for the treatment of an EMT-mediated condition using a topical ophthalmic agent.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Vitreorretinopatia Proliferativa , Adulto , Idoso , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Modelos Animais de Doenças , Emulsões , Feminino , Humanos , Masculino , Coelhos , Vitreorretinopatia Proliferativa/tratamento farmacológico , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/patologia
7.
Transl Vis Sci Technol ; 9(8): 26, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32855872

RESUMO

Purpose: Acute orbital inflammation can lead to irreversible vision loss in serious cases. Treatment thus far has been limited to systemic steroids or surgical decompression of the orbit. An animal model that mimics the characteristic features of acute orbital inflammation as found in thyroid eye disease can be used to explore novel treatment modalities. Methods: We developed a murine model of orbital inflammation by injecting oxazolone into the mouse orbit. The mice underwent magnetic resonance imaging (MRI) and were euthanized at various time points for histologic examination. Immunofluorescence studies of specific inflammatory cells and cytokine arrays were performed. Results: We found clinical and radiographic congruity between the murine model and human disease. After 72 hours, sensitized mice exhibited periorbital dermatitis and inflammation in the eyelids of the injected side. By one week, increased proptosis in the injected eye with significant eyelid edema was appreciated. By four weeks, inflammation and proptosis were decreased. At all three time points, the mice demonstrated exophthalmos and periorbital edema. Histopathologically, populations of inflammatory cells including T cells, macrophages, and neutrophils shared similarities with patient samples in thyroid eye disease. Proteomic changes in the levels of inflammatory and angiogenic markers correlated to the expected angiogenic, inflammatory, and fibrotic responses observed in patients with thyroid eye disease. Conclusions: A murine model of orbital inflammation created using oxazolone recapitulates some of the clinical features of thyroid eye disease and potentially other nonspecific orbital inflammation, typified by inflammatory cell infiltration, orbital tissue expansion and remodeling, and subsequent fibrosis. Translational Relevance: This animal model could serve as a viable platform with which to understand the underlying mechanisms of acute orbital inflammation and to investigate potential new, targeted treatments.


Assuntos
Oftalmopatia de Graves , Oxazolona , Animais , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Camundongos , Oxazolona/toxicidade , Proteômica
8.
Nat Med ; 25(11): 1680-1683, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686034

RESUMO

We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E3/genética , Doenças Neurodegenerativas/genética , Presenilina-1/genética , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/genética , Amiloide/metabolismo , Apolipoproteína E2/genética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Feminino , Homozigoto , Humanos , Masculino , Mutação/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Linhagem
9.
Invest Ophthalmol Vis Sci ; 58(10): 3940-3949, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28777835

RESUMO

Purpose: The purpose of this study was to develop a method for isolating, culturing, and characterizing cells from patient-derived membranes in proliferative vitreoretinopathy (PVR) to be used for drug testing. Methods: PVR membranes were obtained from six patients with grade C PVR. Membrane fragments were analyzed by gross evaluation, fixed for immunohistologic studies to establish cell identity, or digested with collagenase II to obtain single cell suspensions for culture. PVR-derived primary cultures were used to examine the effects of methotrexate (MTX) on proliferation, migration, and cell death. Results: Gross analysis of PVR membranes showed presence of pigmented cells, indicative of retinal pigment epithelial cells. Immunohistochemistry identified cells expressing α-smooth muscle actin, glial fibrillary acidic protein, Bestrophin-1, and F4/80, suggesting the presence of multiple cell types in PVR. Robust PVR primary cultures (C-PVR) were successfully obtained from human membranes, and these cells retained the expression of cell identity markers in culture. C-PVR cultures formed membranes and band-like structures in culture reminiscent of the human condition. MTX significantly reduced the proliferation and band formation of C-PVR, whereas it had no significant effect on cell migration. MTX also induced regulated cell death within C-PVR as assessed by increased expression of caspase-3/7. Conclusions: PVR cells obtained from human membranes can be successfully isolated, cultured, and profiled in vitro. Using these primary cultures, we identified MTX as capable of significantly reducing growth and inducing cell death of PVR cells in vitro.


Assuntos
Membrana Epirretiniana/tratamento farmacológico , Imunossupressores/farmacologia , Metotrexato/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Vitreorretinopatia Proliferativa/tratamento farmacológico , Adulto , Idoso , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Separação Celular , Membrana Epirretiniana/metabolismo , Membrana Epirretiniana/patologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fenótipo , Descolamento Retiniano/complicações , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Fator de Necrose Tumoral alfa/farmacologia , Vitreorretinopatia Proliferativa/etiologia , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/patologia
10.
J Exp Med ; 214(8): 2271-2282, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28698285

RESUMO

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a neurological syndrome characterized by small vessel disease (SVD), stroke, and vascular cognitive impairment and dementia caused by mutations in NOTCH3 No therapies are available for this condition. Loss of mural cells, which encompass pericytes and vascular smooth muscle cells, is a hallmark of CADASIL and other SVDs, including diabetic retinopathy, resulting in vascular instability. Here, we showed that Notch3 signaling is both necessary and sufficient to support mural cell coverage in arteries using genetic rescue in Notch3 knockout mice. Furthermore, we show that systemic administration of an agonist Notch3 antibody prevents mural cell loss and modifies plasma proteins associated with Notch3 activity, including endostatin/collagen 18α1 and Notch3 extracellular domain in mice with the C455R mutation, a CADASIL variant associated with Notch3 loss of function. These findings open opportunities for the treatment of CADASIL and other SVDs by modulating Notch3 signaling.


Assuntos
Anticorpos/uso terapêutico , CADASIL/terapia , Receptor Notch3/fisiologia , Animais , Anticorpos/imunologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiopatologia , Pericitos/fisiologia , Receptor Notch3/imunologia , Transdução de Sinais/fisiologia
11.
Diabetes ; 66(7): 1950-1956, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28400392

RESUMO

Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world's working adult population and affects those with type 1 and type 2 diabetes. We identified Runt-related transcription factor 1 (RUNX1) as a gene upregulated in CD31+ vascular endothelial cells obtained from human PDR fibrovascular membranes (FVMs) via transcriptomic analysis. In vitro studies using human retinal microvascular endothelial cells (HRMECs) showed increased RUNX1 RNA and protein expression in response to high glucose, whereas RUNX1 inhibition reduced HRMEC migration, proliferation, and tube formation. Immunohistochemical staining for RUNX1 showed reactivity in vessels of patient-derived FVMs and angiogenic tufts in the retina of mice with oxygen-induced retinopathy, suggesting that RUNX1 upregulation is a hallmark of aberrant retinal angiogenesis. Inhibition of RUNX1 activity with the Ro5-3335 small molecule resulted in a significant reduction of neovascular tufts in oxygen-induced retinopathy, supporting the feasibility of targeting RUNX1 in aberrant retinal angiogenesis.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Retinopatia Diabética/genética , Células Endoteliais/metabolismo , Retina/metabolismo , Neovascularização Retiniana/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Feminino , Glucose/farmacologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Oxigênio/efeitos adversos , RNA Mensageiro/metabolismo , Neovascularização Retiniana/metabolismo
12.
Invest Ophthalmol Vis Sci ; 57(11): 4704-12, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27607416

RESUMO

PURPOSE: Accumulation of oxidized phospholipids/lipoproteins with age is suggested to contribute to the pathogenesis of AMD. We investigated the effect of oxidized LDL (ox-LDL) on human RPE cells. METHODS: Primary human fetal RPE (hf-RPE) and ARPE-19 cells were treated with different doses of LDL or ox-LDL. Assessment of cell death was measured by lactate dehydrogenase release into the conditioned media. Barrier function of RPE was assayed by measuring transepithelial resistance. Lysosomal accumulation of ox-LDL was determined by immunostaining. Expression of CD36 was determined by RT-PCR; protein blot and function was examined by receptor blocking. NLRP3 inflammasome activation was assessed by RT-PCR, protein blot, caspase-1 fluorescent probe assay, and inhibitor assays. RESULTS: Treatment with ox-LDL, but not LDL, for 48 hours caused significant increase in hf-RPE and ARPE-19 (P < 0.001) cell death. Oxidized LDL treatment of hf-RPE cells resulted in a significant decrease in transepithelial resistance (P < 0.001 at 24 hours and P < 0.01 at 48 hours) relative to LDL-treated and control cells. Internalized ox-LDL was targeted to RPE lysosomes. Uptake of ox-LDL but not LDL significantly increased CD36 protein and mRNA levels by more than 2-fold. Reverse transcription PCR, protein blot, and caspase-1 fluorescent probe assay revealed that ox-LDL treatment induced NLRP3 inflammasome when compared with LDL treatment and control. Inhibition of NLRP3 activation using 10 µM isoliquiritigenin significantly (P < 0.001) inhibited ox-LDL induced cytotoxicity. CONCLUSIONS: These data are consistent with the concept that ox-LDL play a role in the pathogenesis of AMD by NLRP3 inflammasome activation. Suppression of NLRP3 inflammasome activation could attenuate RPE degeneration and AMD progression.


Assuntos
Antígenos CD36/metabolismo , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Lipoproteínas LDL/metabolismo , Degeneração Macular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Epitélio Pigmentado da Retina/metabolismo , Morte Celular , Linhagem Celular , Humanos , Immunoblotting , Degeneração Macular/genética , Degeneração Macular/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Oxirredução , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/embriologia , Transdução de Sinais
13.
Ophthalmology ; 123(9): 2028-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423310

RESUMO

PURPOSE: The human orbit is an environment that is vulnerable to inflammation and edema in the setting of autoimmune thyroid disease. Our study investigated the tenet that orbital adipose tissue lacks lymphatic vessels and analyzed the clinicopathologic differences between patients with acute and chronic thyroid eye disease (TED). The underlying molecular mediators of blood and lymphatic vessel formation within the orbital fat also were evaluated. DESIGN: Retrospective cohort study. PARTICIPANTS: The study included fat specimens from 26 orbits of 15 patients with TED undergoing orbital decompression. Orbital fat specimens from patients without TED as well as cadaveric orbital fat served as controls. METHODS: Tissue specimens were processed as formalin-fixed, paraffin-embedded sections or frozen cryosections for immunohistochemistry. Total RNA was extracted and analyzed via quantitative (real-time) reverse-transcription polymerase chain reaction. Clinicopathologic correlation was made by determining the clinical activity score (CAS) of each patient with TED. MAIN OUTCOME MEASURES: Samples were examined for vascular and lymphatic markers including podoplanin, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and cluster of differentiation 31 (CD31) by immunohistochemistry, as well as for mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptors, semaphorin 3F, neuropilin 1, neuropilin 2, podoplanin, and LYVE-1 by quantitative (real-time) reverse-transcription polymerase chain reaction. RESULTS: Clinicopathologic correlation revealed increased staining of CD31-positive blood vessels in patients with acute TED with a CAS more than 4, as well as rare staining of podoplanin-positive lymphatic vessels within acutely inflamed orbital fat tissue. Additionally, quantitative (real-time) reverse-transcription polymerase chain reaction analysis demonstrated increased expression of VEGF receptor (VEGFR) 2 as well as VEGF signaling molecules VEGF-A, VEGF-C, and VEGF-D. CONCLUSIONS: In acute TED, compared with chronic TED and control orbital fat, there is increased blood vessel density, suggesting neovascularization and rare lymphatic vessels suggestive of limited lymphangiogenesis. This proangiogenic and prolymphangiogenic microenvironment is likely the result of the increased expression of VEGFR-2, VEGF-A, VEGF-C, and VEGF-D. These findings imply that orbital edema in acute TED may be mediated, in part, by both the formation of new, immature blood vessels and the formation of lymphatic capillaries that are functionally incapable of draining interstitial fluid.


Assuntos
Oftalmopatia de Graves/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfangiogênese/fisiologia , Neovascularização Patológica/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Feminino , Oftalmopatia de Graves/metabolismo , Humanos , Imuno-Histoquímica , Vasos Linfáticos/patologia , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/patologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estudos Retrospectivos , Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Mol Vis ; 21: 673-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26120272

RESUMO

PURPOSE: Epiretinal fibrovascular membranes (FVMs) are a hallmark of proliferative diabetic retinopathy (PDR). Surgical removal of FVMs is often indicated to treat tractional retinal detachment. This potentially informative pathological tissue is usually disposed of after surgery without further examination. We developed a method for isolating and characterizing cells derived from FVMs and correlated their expression of specific markers in culture with that in tissue. METHODS: FVMs were obtained from 11 patients with PDR during diabetic vitrectomy surgery and were analyzed with electron microscopy (EM), comparative genomic hybridization (CGH), immunohistochemistry, and/or digested with collagenase II for cell isolation and culture. Antibody arrays and enzyme-linked immunosorbent assay (ELISA) were used to profile secreted angiogenesis-related proteins in cell culture supernatants. RESULTS: EM analysis of the FVMs showed abnormal vessels composed of endothelial cells with large nuclei and plasma membrane infoldings, loosely attached perivascular cells, and stromal cells. The cellular constituents of the FVMs lacked major chromosomal aberrations as shown with CGH. Cells derived from FVMs (C-FVMs) could be isolated and maintained in culture. The C-FVMs retained the expression of markers of cell identity in primary culture, which define specific cell populations including CD31-positive, alpha-smooth muscle actin-positive (SMA), and glial fibrillary acidic protein-positive (GFAP) cells. In primary culture, secretion of angiopoietin-1 and thrombospondin-1 was significantly decreased in culture conditions that resemble a diabetic environment in SMA-positive C-FVMs compared to human retinal pericytes derived from a non-diabetic donor. CONCLUSIONS: C-FVMs obtained from individuals with PDR can be isolated, cultured, and profiled in vitro and may constitute a unique resource for the discovery of cell signaling mechanisms underlying PDR that extends beyond current animal and cell culture models.


Assuntos
Retinopatia Diabética/patologia , Actinas/metabolismo , Adulto , Angiopoietina-1/metabolismo , Proliferação de Células , Separação Celular , Células Cultivadas , Hibridização Genômica Comparativa , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Membrana Epirretiniana/genética , Membrana Epirretiniana/metabolismo , Membrana Epirretiniana/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
15.
Am J Pathol ; 184(10): 2618-26, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092275

RESUMO

Diabetes can lead to vision loss because of progressive degeneration of the neurovascular unit in the retina, a condition known as diabetic retinopathy. In its early stages, the pathology is characterized by microangiopathies, including microaneurysms, microhemorrhages, and nerve layer infarcts known as cotton-wool spots. Analyses of postmortem human retinal tissue and retinas from animal models indicate that degeneration of the pericytes, which constitute the outer layer of capillaries, is an early event in diabetic retinopathy; however, the relative contribution of specific cellular components to the pathobiology of diabetic retinopathy remains to be defined. We investigated the phenotypic consequences of pericyte death on retinal microvascular integrity by using nondiabetic mice conditionally expressing a diphtheria toxin receptor in mural cells. Five days after administering diphtheria toxin in these adult mice, changes were observed in the retinal vasculature that were similar to those observed in diabetes, including microaneurysms and increased vascular permeability, suggesting that pericyte cell loss is sufficient to trigger retinal microvascular degeneration. Therapies aimed at preventing or delaying pericyte dropout may avoid or attenuate the retinal microangiopathy associated with diabetes.


Assuntos
Retinopatia Diabética/patologia , Pericitos/patologia , Retina/patologia , Vasos Retinianos/patologia , Animais , Capilares/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/patologia , Degeneração Retiniana
16.
Invest Ophthalmol Vis Sci ; 55(8): 4747-58, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24994868

RESUMO

PURPOSE: To evaluate the mechanism of tamoxifen-induced cell death in human cultured RPE cells, and to investigate concurrent cell death mechanisms including pyroptosis, apoptosis, and necroptosis. METHODS: Human RPE cells were cultured until confluence and treated with tamoxifen; cell death was measured by detecting LDH release. Tamoxifen-induced cell death was further confirmed by 7-aminoactinomycin D (7-AAD) and annexin V staining. Lysosomal destabilization was assessed using lysosomal-associated membrane protein-1 (LAMP-1) and acridine orange staining. The roles of lysosomal enzymes cathepsin B and L were examined by blocking their activity. Caspase activity was evaluated by caspase-1, -3, -8, and -9 specific inhibition. Cells were primed with IL-1α and treated with tamoxifen; mature IL-1ß production was quantified via ELISA. Caspase activity was verified with the fluorochrome-labeled inhibitor of caspases (FLICA) probe specific for each caspase. Regulated cell necrosis or necroptosis was examined with 7-AAD and inhibition of receptor-interacting protein 1 (RIP1) kinase using necrostatin-1 (Nec-1). RESULTS: Cell death occurred within 2 hours of tamoxifen treatment of confluent RPE cells and was accompanied by lysosomal membrane permeabilization. Blockade of cathepsin B and L activity led to a significant decrease in cell death, indicating that lysosomal destabilization and cathepsin release occur prior to regulated cell death. Tamoxifen-induced toxicity was shown to occur through both caspase-dependent and caspase-independent cell death pathways. Treatment of RPE cells with caspase inhibitors and Nec-1 resulted in a near complete rescue from cell death. CONCLUSIONS: Tamoxifen-induced cell death occurs through concurrent regulated cell death mechanisms. Simultaneous inhibition of caspase-dependent and caspase-independent cell death pathways is required to protect cells from tamoxifen. Inhibition of upstream activators, such as the cathepsins, may represent a novel approach to block multiple cell death pathways.


Assuntos
Doenças Retinianas/induzido quimicamente , Epitélio Pigmentado da Retina/patologia , Tamoxifeno/toxicidade , Western Blotting , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Antagonistas de Estrogênios/toxicidade , Humanos , Interleucina-1beta/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...