Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861864

RESUMO

Polyamide creates high-performance composite materials, which are replacing the traditional epoxy composites in several applications. In this context, exposure to hostile environments is expected. On the other hand, due to the viscoelastic nature of the matrix, these composite materials are prone to stress relaxation. Therefore, the stress relaxation behaviour of glass/polyamide 6 composites was studied considering different fibre directions, as well as exposure to NaOH and HCl solutions. Stress relaxation tests on the bending mode were carried out, and the stress recorded during the loading time (7200 s). All tests were characterized by a stress decrease over time, but laminates with higher fibre angles were more prone to stress relaxation. However, exposure to hostile solutions promoted more significant decreases, where the highest stress relaxation was achieved for alkaline environments with values that were three times higher for laminates with fibres at 0° and around one and half times higher for 45° fibre alignments when compared with the control samples. Finally, the Kohlrausch-Williams-Watts (KWW) model showed that it can be used to predict stress relaxation time, due to the accuracy that was obtained between the experimental and theoretical results.

2.
Comput Methods Biomech Biomed Engin ; 20(11): 1236-1248, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28675043

RESUMO

Two groups of 4-unit zirconia frameworks were produced by CAD/CAM to simulate the restoration of an anterior edentulous gap supported by 2 implant-abutment assemblies. Group 1 comprised straight configuration frameworks and group 2 consisted of arched frameworks. Specimens were made with the same connector cross-section area and were cemented and submitted to static loads. Displacements were captured with two high-speed photographic cameras and analysed with video correlation system. Frameworks and the implant-abutment assembly were scanned and converted to 3DCAD objects by reverse engineering process. A specimen of each group was veneered and the corresponding 3D geometry was similarly obtained after scanning. Numerical models were created from the CAD objects and the FE analysis was performed on the zirconia frameworks and on the FPDs bi-layered with porcelain (veneered frameworks). Displacements were higher for the curved frameworks group, under any load. The predicted displacements correlated well with the experimental values of the two framework groups, but on the straight framework the experimental vertical displacements were superior to those predicted by the FEA. The results showed that the round curvature of zirconia anterior implant-supported FPDs plays a significant role on the deformation/stress of FPDs that cannot be neglected neither in testing nor in simulation and should be considered in the clinical setting.


Assuntos
Prótese Dentária Fixada por Implante , Análise de Elementos Finitos , Processamento de Imagem Assistida por Computador , Zircônio/química , Fenômenos Biomecânicos , Simulação por Computador , Desenho Assistido por Computador , Porcelana Dentária/química , Humanos , Teste de Materiais , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA