Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AIMS Microbiol ; 10(1): 161-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525036

RESUMO

Desert soil hosts many microorganisms, whose activities are essential from an ecological viewpoint. Moreover, they are of great anthropic interest. The knowledge of extreme environments microbiomes may be beneficial for agriculture, technology, and human health. In this study, 11 Arthrobacter strains from topsoil samples collected from the Great Gobi A Strictly Protected Area in the Gobi Desert, were characterized by a combination of different techniques. The phylogenetic analysis, performed using their 16S rDNA sequences and the most similar Arthrobacter sequences found in databases, revealed that most of them were close to A. crystallopoietes, while others joined a sister group to the clade formed by A. humicola, A. pascens, and A. oryzae. The resistance of each strain to different antibiotics, heavy-metals, and NaCl was also tested as well as the inhibitory potential against human pathogens (i.e., Burkholderia ssp., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus ssp.) via cross-streaking, to check the production of metabolites with antimicrobial activity. Data obtained revealed that all strains were resistant to heavy metals and were able to strongly interfere with the growth of many of the human pathogens tested. The volatile organic compounds (VOCs) profile of the 11 Arthrobacter strains was also analyzed. A total of 16 different metabolites were found, some of which were already known for having an inhibitory action against different Gram-positive and Gram-negative bacteria. Isolate MS-3A13, producing the highest quantity of VOCs, is the most efficient against Burkholderia cepacia complex (Bcc), K. pneumoniae, and coagulase-negative Staphylococci (CoNS) strains. This work highlights the importance of understanding microbial populations' phenotypical characteristics and dynamics in extreme environments to uncover the antimicrobial potential of new species and strains.

2.
Front Biosci (Landmark Ed) ; 29(3): 111, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38538270

RESUMO

BACKGROUND: Bacterial endophytic communities associated with medicinal plants synthesize a plethora of bioactive compounds with biological activities. Their easy isolation and growth procedures make bacterial endophytes an untapped source of novel drugs, which might help to face the problem of antimicrobial resistance. This study investigates the antagonistic potential of endophytic bacteria isolated from different compartments of the medicinal plant O. heracleoticum against human opportunistic pathogens. METHODS: A panel of endophytes was employed in cross-streaking tests against multidrug-resistant human pathogens, followed by high-resolution chemical profiling using headspace-gas chromatography/mass spectrometry. RESULTS: Endophytic bacteria exhibited the ability to antagonize the growth of opportunistic pathogens belonging to the Burkholderia cepacia complex (Bcc). The different inhibition patterns observed were related to their taxonomic attribution at the genus level; most active strains belong to the Gram-positive genera Bacillus, Arthrobacter, and Pseudarthrobacter. Bcc strains of clinical origin were more sensitive than environmental strains. Cross-streaking tests against other 36 human multidrug-resistant pathogens revealed the highest antimicrobial activity towards the Coagulase-negative staphylococci and Klebsiella pneumoniae strains. Interestingly, strains of human origin were the most inhibited, in both groups. Concerning the production of volatile organic compounds (VOCs), the strain Arthrobacter sp. OHL24 was the best producer of such compounds, while two Priestia strains were good ketones producers and so could be considered for further biotechnological applications. CONCLUSIONS: Overall, this study highlights the diverse antagonistic activities of O. heracleoticum-associated endophytes against both Bcc and multidrug-resistant (MDR) human pathogens. These findings hold important implications for investigating bacterial endophytes of medicinal plants as new sources of antimicrobial compounds.


Assuntos
Origanum , Plantas Medicinais , Humanos , Endófitos/química , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química
3.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175436

RESUMO

The inclusion of fluorine atoms or heterocyclic moiety into drug structures represents a recurrent motif in medicinal chemistry. The combination of these two features is constantly appearing in new molecular entities with various biological activities. This is demonstrated by the increasing number of newly synthesized fluorinated heterocyclic compounds among the Food and Drug Administration FDA-approved drugs. In this review, the biological activity, as well as the synthetic aspects, of 33 recently FDA-approved fluorinated heterocyclic drugs from 2016 to 2022 are highlighted.


Assuntos
Compostos Heterocíclicos , Preparações Farmacêuticas , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Flúor/química , Química Farmacêutica
4.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203549

RESUMO

One of the main causes of mortality in humans continues to be infectious diseases. Scientists are searching for new alternatives due to the fast increase in resistance of some harmful bacteria to the frontline antibiotics. To effectively treat pathogenic infections, it is crucial to design antibiotics that can prevent the development of pathogenic resistance. For this purpose, a set of 39 quaternary pyridinium and bis-pyridinium salts with different lengths of side alkyl or fluorinated chains, heterocyclic spacers, and counter ions were tested on diverse reference bacterial ATCC (American Type Culture Collection) strains, such as S. aureus and E. coli. Subsequently, 6 out of the 39 pyridinium salts showing relevant MIC (Minimum Inhibitory Concentration) values were tested on clinically isolated, resistant strains of S. aureus, S. epidermids, S. haemolyticus, K. pneumoniae, A. baumannii, and P. aeruginosa. Additional tests have been performed to assess if the minimum concentration detected through MIC assay may limit the growth of biofilms.


Assuntos
Escherichia coli , Triazóis , Humanos , Triazóis/farmacologia , Sais , Staphylococcus aureus , Cátions , Antibacterianos/farmacologia , Klebsiella pneumoniae , Oxidiazóis/farmacologia , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...