Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(50): 29305-29311, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35528439

RESUMO

We demonstrate a highly efficient, single-step, cathodic exfoliation process of graphite to produce single- to few-layer graphene with a yield of over 70% from natural graphite flakes. By employing boron-doped diamond electrodes high potentials up to -60 V can be applied which was found to greatly increase the yield. The produced graphene flakes are partially hydrogenated during the electrochemical treatment likely aiding in their exfoliation. The resulting flakes have a large lateral size with up to 50 µm diameter. Due to the reversibility of the hydrogenation by thermal treatment the graphene flakes possess a low defect density as judged by the Raman D/G ratio yielding highly conductive films with sheet resistances of 100 to 3200 Ω â–¡-1 at 10 to 70% transparency.

2.
Nanotechnology ; 29(10): 105302, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320371

RESUMO

Mechanical and electrical losses induced by an electrode material greatly influence the performance of bulk acoustic wave (BAW) resonators. Graphene as a conducting and virtually massless 2D material is a suitable candidate as an alternative electrode material for BAW resonators which reduces electrode induced mechanical losses. In this publication we show that graphene acts as an active top electrode for solidly mounted BAW resonators (BAW-SMR) at 2.1 GHz resonance frequency. Due to a strong decrease of mass loading and its remarkable electronic properties, graphene demonstrates its ability as an ultrathin conductive layer. In our experiments we used an optimized graphene wet transfer on aluminum nitride-based solidly mounted resonator devices. We achieved more than a triplication of the resonator's quality factor Q and a resonance frequency close to an 'unloaded' resonator without metallization. Our results reveal the direct influence of both, the graphene quality and the graphene contacting via metal structures, on the performance characteristic of a BAW resonator. These findings clearly show the potential of graphene in minimizing mechanical losses due to its virtually massless character. Moreover, they highlight the advantages of graphene and other 2D conductive materials for alternative electrodes in electroacoustic resonators for radio frequency applications.

3.
Nanomaterials (Basel) ; 7(8)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820462

RESUMO

The two-dimensional and virtually massless character of graphene attracts great interest for radio frequency devices, such as surface and bulk acoustic wave resonators. Due to its good electric conductivity, graphene might be an alternative as a virtually massless electrode by improving resonator performance regarding mass-loading effects. We report on an optimization of the commonly used wet transfer technique for large-area graphene, grown via chemical vapor deposition, onto aluminum nitride (AlN), which is mainly used as an active, piezoelectric material for acoustic devices. Today, graphene wet transfer is well-engineered for silicon dioxide (SiO2). Investigations on AlN substrates reveal highly different surface properties compared to SiO2 regarding wettability, which strongly influences the quality of transferred graphene monolayers. Both physical and chemical effects of a plasma treatment of AlN surfaces change wettability and avoid large-scale cracks in the transferred graphene sheet during desiccation. Spatially-resolved Raman spectroscopy reveals a strong strain and doping dependence on AlN plasma pretreatments correlating with the electrical conductivity of graphene. In our work, we achieved transferred crack-free large-area (40 × 40 mm²) graphene monolayers with sheet resistances down to 350 Ω/sq. These achievements make graphene more powerful as an eco-friendly and cheaper replacement for conventional electrode materials used in radio frequency resonator devices.

4.
Opt Express ; 24(15): 17433-52, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464190

RESUMO

We study the spatial intensity distribution and the self-reconstruction of quasi-Bessel beams produced from refractive axicon lenses with edge emitting laser diodes as asymmetric and astigmatic illumination sources. Comparing these to a symmetric mono-mode fiber source, we find that the asymmetry results in a transition of a quasi-Bessel beam into a bow-tie shaped pattern and eventually to a line shaped profile at a larger distance along the optical axis. Furthermore, we analytically estimate and discuss the effects of astigmatism, substrate modes and non-perfect axicons. We find a good agreement between experiment, simulation and analytic considerations. Results include the derivation of a maximal axicon angle related to astigmatism of the illuminating beam, impact of laser diode beam profile imperfections like substrate modes and a longitudinal oscillation of the core intensity and radius caused by a rounded axicon tip.

5.
Nanomaterials (Basel) ; 6(11)2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28335345

RESUMO

Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c-axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.

6.
Langmuir ; 31(19): 5319-25, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25936368

RESUMO

Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.


Assuntos
Nanopartículas/química , Cloreto de Potássio/química , Dióxido de Silício/química , Coloides/química , Eletrólitos/química , Cinética , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície , Água/química
7.
Langmuir ; 29(21): 6296-301, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23617559

RESUMO

A thermally induced functionalization process for gallium nitride surfaces with 1-alkenes is introduced. The resulting functionalization layers are characterized with atomic force microscopy and X-ray photoelectron spectroscopy and compared to reference samples without and with a photochemically generated functionalization layer. The resulting layers show very promising characteristics as functionalization for GaN based biosensors. On the basis of the experimental results, important characteristics of the functionalization layers are estimated and a possible chemical reaction scheme is proposed.


Assuntos
Alcenos/química , Gálio/química , Temperatura , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Opt Lett ; 36(18): 3587-9, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21931399

RESUMO

We demonstrate a 2 µm semiconductor disk laser emitting in a single longitudinal mode with a linewidth in the <10 kHz range. A heterodyne detection scheme was used for precise linewidth measurements. In these experiments, the output beams of two identical laser cavities were superposed in order to generate a beat note signal on a photodiode. In the absence of active frequency stabilization, a linewidth of 45 kHz was measured at an output power of 100 mW. When using a frequency stabilization consisting of a feedback loop with a Fabry-Perot interferometer as wavelength reference, the linewidth could be further reduced to 9 kHz.

9.
Small ; 4(12): 2214-21, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18972459

RESUMO

One-step device fabrication through the integration of nanowires (NWs) into silicon microchips is still under intensive scientific study as it has proved difficult to obtain a reliable and controllable fabrication technique. So far, the techniques are either costly or suffer from small throughput. Recently, a cost-effective method based on thin-film fracture that can be used as a template for NW fabrication was suggested. Here, a way to integrate NWs between microcontacts is demonstrated. Different geometries of microstructured photoresist formed by using standard photolithography are analyzed. Surprisingly, a very simple "stripe" geometry is found to yield highly reproducible fracture patterns, which are convenient templates for fault-tolerant NW fabrication. Microchips containing integrated Au, Pd, Ni, and Ti NWs and their suitability for studies of conductivity and oxidation behavior are reported, and their suitability as a hydrogen sensor is investigated. Details of the fabrication process are also discussed.


Assuntos
Nanopartículas Metálicas/química , Nanofios/química , Ouro/química , Análise em Microsséries , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanofios/ultraestrutura , Níquel/química , Oxirredução , Paládio/química , Tamanho da Partícula , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...