Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Cardiovasc Dis ; 115(8-9): 436-447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35840491

RESUMO

BACKGROUND: X-ray exposure during complex percutaneous coronary intervention is a very important issue. AIM: To reduce patient peak skin dose during percutaneous coronary intervention procedures for chronic total occlusion using on-line estimated peak skin dose software (Dose Map). METHODS: Throughout the procedure, Dose Map provided a map of local cumulative peak skin dose. This map was displayed in-room from 1Gy cumulative air kerma, and was updated every 0.5Gy. The operator's actions to minimize deterministic risks following map notification were collected. Skin reaction was evaluated 3 months after the procedure. A comparison with our historical X-ray exposure data (207 patients from January 2013 to July 2014) was performed. RESULTS: From November 2015 to October 2016, 97 patients (Japanese chronic total occlusion score 2.1±1.1; 100 percutaneous coronary intervention procedures for chronic total occlusion) were prospectively enrolled. Fluoroscopy time was 40.8 (21.6-60.3) minutes, cumulative air kerma 1884 (1144-3231) mGy, estimated peak skin dose 962 (604-1474) mGy and kerma area product 115.8 (71.5-206.7) Gy.cm2. Cumulative air kerma was>3Gy in 28% of cases, and>5Gy in 11% of cases. In 68% of cases, at least one action was taken by the operator after map notification to optimize skin dose distribution. Main changes included: gantry angulation (52%); field of view (25%); and collimation (13%). No skin injuries were observed at follow-up. In comparison with our chronic total occlusion historical radiation data, median cumulative air kerma and kerma area product were reduced by 31% and 33%, respectively (P<0.005. CONCLUSION: Online skin dose mapping software allows the distribution of patient skin dose during complex percutaneous coronary intervention procedures, and may minimize X-ray exposure.


Assuntos
Oclusão Coronária , Intervenção Coronária Percutânea , Exposição à Radiação , Doenças Vasculares , Angiografia Coronária/efeitos adversos , Oclusão Coronária/diagnóstico por imagem , Oclusão Coronária/terapia , Fluoroscopia , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Doses de Radiação , Exposição à Radiação/efeitos adversos , Exposição à Radiação/prevenção & controle , Radiografia Intervencionista/efeitos adversos , Tecnologia
2.
AsiaIntervention ; 6(1): 25-33, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34912981

RESUMO

AIMS: Established, evidence-based measures of radiation are required to minimise its hazards, while maintaining adequate image quality. The aim of this study is to evaluate radiation data and generate reference radiation levels for commonly performed coronary catheterisation procedures in India. METHODS AND RESULTS: In this prospective, observational study, all procedures were performed in accordance with the established standards using Innova IGS 520/2100-IQ catheterisation laboratories. Demographic, procedural and radiation data were collected. Dose reference limits (DRL) were established as the 75th percentile of the total distribution. There were 2,906 coronary angiograms (CAG), 750 percutaneous coronary interventions (PCI) and 715 CAG+PCI. DRLs for dose area product were: 19.6 Gy·cm2 for CAG, 49.8 Gy·cm2 for PCI and 72.0 Gy·cm2 for CAG+PCI, respectively. Median cumulative air kerma levels were: 185 mGy for CAG, 533mGy for PCI, and 891 mGy for CAG+PCI. Male gender, higher BMI, combining CAG+PCI, fluoroscopy time, number of cine frames, and image acquisition settings were significant contributors to increased radiation dose. CONCLUSIONS: This study established reference radiation dose levels for diagnostic and interventional coronary procedures in India, which were comparable to and in the lower range of international standards.

3.
Interv Neurol ; 6(3-4): 105-116, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29118787

RESUMO

BACKGROUND AND PURPOSE: Per the ALARA principle, reducing the dose delivered to both patients and staff must be a priority for endovascular therapists, who should monitor their own practice. We evaluated patient exposure to radiation during common neurointerventions performed with a recent flat-panel detector angiographic system and compared our results with those of recently published studies. METHODS: All consecutive patients who underwent a diagnostic cerebral angiography or intervention on 2 modern flat-panel detector angiographic biplane systems (Innova IGS 630, GE Healthcare, Chalfont St Giles, UK) from February to November 2015 were retrospectively analyzed. Dose-area product (DAP), cumulative air kerma (CAK) per plane, fluoroscopy time (FT), and total number of digital subtraction angiography (DSA) frames were collected, reported as median (interquartile range), and compared with the previously published literature. RESULTS: A total of 755 consecutive cases were assessed in our institution during the study period, including 398 diagnostic cerebral angiographies and 357 interventions. The DAP (Gy × cm2), fontal and lateral CAK (Gy), FT (min), and total number of DSA frames were as follows: 43 (33-60), 0.26 (0.19-0.33), 0.09 (0.07-0.13), 5.6 (4.2-7.5), and 245 (193-314) for diagnostic cerebral angiographies, and 66 (41-110), 0.46 (0.25-0.80), 0.18 (0.10-0.30), 18.3 (9.1-30.2), and 281 (184-427) for interventions. CONCLUSION: Our diagnostic cerebral angiography group had a lower median and was in the 75th percentile of DAP and FT when compared with the published literature. For interventions, both DAP and number of DSA frames were significantly lower than the values reported in the literature, despite a higher FT. Subgroup analysis by procedure type also revealed a lower or comparable DAP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...