Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 57(19): 2334-2346.e8, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174556

RESUMO

To promote infections, pathogens exploit host cell machineries such as structural elements of the plasma membrane. Studying these interactions and identifying molecular players are ideal for gaining insights into the fundamental biology of the host cell. Here, we used the anthrax toxin to screen a library of 1,500 regulatory, cell-surface, and membrane trafficking genes for their involvement in the intoxication process. We found that endoplasmic reticulum (ER)-Golgi-localized proteins TMED2 and TMED10 are required for toxin oligomerization at the plasma membrane of human cells, an essential step dependent on localization to cholesterol-rich lipid nanodomains. Biochemical, morphological, and mechanistic analyses showed that TMED2 and TMED10 are essential components of a supercomplex that operates the exchange of both cholesterol and ceramides at ER-Golgi membrane contact sites. Overall, this study of anthrax intoxication led to the discovery that lipid compositional remodeling at ER-Golgi interfaces fully controls the formation of functional membrane nanodomains at the cell surface.


Assuntos
Retículo Endoplasmático , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Vesicular , Membrana Celular/metabolismo , Ceramidas/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Mol Biol Cell ; 32(21): ar18, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432484

RESUMO

Stress granules (SGs) are ribonucleoprotein functional condensates that form under stress conditions in all eukaryotic cells. Although their stress-survival function is far from clear, SGs have been implicated in the regulation of many vital cellular pathways. Consequently, SG dysfunction is thought to be a mechanistic point of origin for many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Additionally, SGs are thought to play a role in pathogenic pathways as diverse as viral infection and chemotherapy resistance. There is a growing consensus on the hypothesis that understanding the mechanistic regulation of SG physical properties is essential to understanding their function. Although the internal dynamics and condensation mechanisms of SGs have been broadly investigated, there have been fewer investigations into the timing of SG formation and clearance in live cells. Because the lifetime of SG persistence can be a key factor in their function and tendency toward pathological dysregulation, SG clearance mechanisms deserve particular attention. Here we show that resveratrol and its analogues piceatannol, pterostilbene, and 3,4,5,4'-tetramethoxystilbene induce G3BP-dependent SG formation with atypically rapid clearance kinetics. Resveratrol binds to G3BP, thereby reducing its protein-protein association valency. We suggest that altering G3BP valency is a pathway for the formation of uniquely transient SGs.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Resveratrol/farmacologia , Grânulos de Estresse/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Cinética , Proteínas de Ligação a Poli-ADP-Ribose/efeitos dos fármacos , RNA Helicases/efeitos dos fármacos , Proteínas com Motivo de Reconhecimento de RNA/efeitos dos fármacos , Ribonucleoproteínas/metabolismo , Grânulos de Estresse/efeitos dos fármacos
3.
Cell Rep ; 35(11): 109237, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133922

RESUMO

The formation of stress granules (SGs) is an essential aspect of the cellular response to many kinds of stress, but its adaptive role is far from clear. SG dysfunction is implicated in aging-onset neurodegenerative diseases, prompting interest in their physiological function. Here, we report that during starvation stress, SGs interact with mitochondria and regulate metabolic remodeling. We show that SG formation leads to a downregulation of fatty acid ß-oxidation (FAO) through the modulation of mitochondrial voltage-dependent anion channels (VDACs), which import fatty acids (FAs) into mitochondria. The subsequent decrease in FAO during long-term starvation reduces oxidative damage and rations FAs for longer use. Failure to form SGs, whether caused by the genetic deletion of SG components or an amyotrophic lateral sclerosis (ALS)-associated mutation, translates into an inability to downregulate FAO. Because metabolic dysfunction is a common pathological element of neurodegenerative diseases, including ALS, our findings provide a direction for studying the clinical relevance of SGs.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Grânulos de Estresse/metabolismo , Esclerose Lateral Amiotrófica/patologia , Linhagem Celular Tumoral , Linhagem da Célula , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Gotículas Lipídicas/metabolismo , Neurônios/patologia , Oxirredução , Permeabilidade , Inanição
4.
EMBO Rep ; 22(5): e51740, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738926

RESUMO

Stress granules (SGs) are dynamic condensates associated with protein misfolding diseases. They sequester stalled mRNAs and signaling factors, such as the mTORC1 subunit raptor, suggesting that SGs coordinate cell growth during and after stress. However, the molecular mechanisms linking SG dynamics and signaling remain undefined. We report that the chaperone Hsp90 is required for SG dissolution. Hsp90 binds and stabilizes the dual-specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3) in the cytosol. Upon Hsp90 inhibition, DYRK3 dissociates from Hsp90 and becomes inactive. Inactive DYRK3 is subjected to two different fates: it either partitions into SGs, where it is protected from irreversible aggregation, or it is degraded. In the presence of Hsp90, DYRK3 is active and promotes SG disassembly, restoring mTORC1 signaling and translation. Thus, Hsp90 links stress adaptation and cell growth by regulating the activity of a key kinase involved in condensate disassembly and translation restoration.


Assuntos
Grânulos Citoplasmáticos , Transdução de Sinais , Citoplasma , Grânulos Citoplasmáticos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , RNA Mensageiro/metabolismo
5.
STAR Protoc ; 1(3): 100217, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377110

RESUMO

Photoconversion enables real-time labeling of protein sub-populations inside living cells, which can then be tracked with submicrometer resolution. Here, we detail the protocol of comparing protein dynamics inside membraneless organelles in live HEK293T cells using a CRISPR-Cas9 PABPC1-Dendra2 marker of stress granules. Measuring internal dynamics of membraneless organelles provides insight into their functional state, physical properties, and composition. Photoconversion has the advantage over other imaging techniques in that it is less phototoxic and allows for dual color tracking of proteins. For complete details on the use and execution of this protocol, please refer to Amen and Kaganovich (2020).


Assuntos
Técnicas de Sonda Molecular/instrumentação , Imagem Óptica/métodos , Grânulos de Estresse/metabolismo , Benzotiazóis/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/fisiologia , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Sondas Moleculares/genética , Organelas/metabolismo , Proteínas/metabolismo , Grânulos de Estresse/fisiologia
6.
Sci Rep ; 10(1): 19525, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177544

RESUMO

Vimentin is one of the first cytoplasmic intermediate filaments to be expressed in mammalian cells during embryogenesis, but its role in cellular fitness has long been a mystery. Vimentin is acknowledged to play a role in cell stiffness, cell motility, and cytoplasmic organization, yet it is widely considered to be dispensable for cellular function and organismal development. Here, we show that Vimentin plays a role in cellular stress response in differentiating cells, by recruiting aggregates, stress granules, and RNA-binding proteins, directing their elimination and asymmetric partitioning. In the absence of Vimentin, pluripotent embryonic stem cells fail to differentiate properly, with a pronounced deficiency in neuronal differentiation. Our results uncover a novel function for Vimentin, with important implications for development, tissue homeostasis, and in particular, stress response.


Assuntos
Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/fisiologia , Vimentina/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , DNA Helicases/metabolismo , Fibroblastos/citologia , Fibroblastos/fisiologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Agregados Proteicos/fisiologia , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Vimentina/genética
7.
iScience ; 23(10): 101550, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083719

RESUMO

Stress Granule formation has been linked to the resistance of some cancer cells to chemotherapeutic intervention. A number of studies have proposed that certain anti-tumor compounds promote cancer cell survival by inducing Stress Granule formation, leading to increased cellular fitness and apoptosis avoidance. Here we show that a potent fatty acid synthase inhibitor, fasnall, known for its anti-tumor capabilities, triggers the formation of atypical Stress Granules, independently of fatty acid synthase inhibition, characterized by high internal mobility and rapid turnover.

8.
Sci Signal ; 13(623)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184286

RESUMO

As the physical barrier between the cell and the outside environment, the plasma membrane is well-positioned to be the first responder to stress. The membrane is also highly vulnerable to many types of perturbation, including heat, force, osmotic pressure, lipid shortage, and starvation. To determine whether the structural changes in the plasma membrane of Saccharomyces cerevisiae brought about by nutrient stress can be communicated to regulatory networks within the cell, we identified proteins that interact with stress granules (SGs), subcellular structures composed of proteins, and nontranslated RNAs that form when cells are stressed. We found that SG proteins interacted with components of eisosomes, which are subcortical membrane structures with a distinct lipid and protein composition. In response to starvation-triggered phosphorylation of eisosome proteins, eisosomes clustered and recruited SG components, including active Pkc1. The absence of eisosomes impaired SG formation, resulting in delayed recovery from nutrient deprivation. Thus, eisosome clustering is an example of interdomain communication in response to stress and identifies a previously unknown mechanism of SG regulation.


Assuntos
Membrana Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Grânulos Citoplasmáticos/genética , Espectrometria de Massas/métodos , Microscopia Confocal/métodos , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína Quinase C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
9.
Front Cell Dev Biol ; 8: 606111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33972926

RESUMO

Metabolic regulation is a necessary component of all stress response pathways, because all different mechanisms of stress-adaptation place high-energy demands on the cell. Mechanisms that integrate diverse stress response pathways with their metabolic components are therefore of great interest, but few are known. We show that stress granule (SG) formation, a common adaptive response to a variety of stresses, is reciprocally regulated by the pathways inducing lipid droplet accumulation. Inability to upregulate lipid droplets reduces stress granule formation. Stress granule formation in turn drives lipid droplet clustering and fatty acid accumulation. Our findings reveal a novel connection between stress response pathways and new modifiers of stress granule formation.

10.
Microb Cell ; 4(6): 182-190, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28660202

RESUMO

We present a set of vectors containing integrative modules for efficient genome integration into the commonly used selection marker loci of the yeast Saccharomyces cerevisiae. A fragment for genome integration is generated via PCR with a unique set of short primers and integrated into HIS3, URA3, ADE2, and TRP1 loci. The desired level of expression can be achieved by using constitutive (TEF1p, GPD1p), inducible (CUP1p, GAL1/10p), and daughter-specific (DSE4p) promoters available in the modules. The reduced size of the integrative module compared to conventional integrative plasmids allows efficient integration of multiple fragments. We demonstrate the efficiency of this tool by simultaneously tagging markers of the nucleus, vacuole, actin, and peroxisomes with genomically integrated fluorophores. Improved integration of our new pDK plasmid series allows stable introduction of several genes and can be used for multi-color imaging. New bidirectional promoters (TEF1p-GPD1p, TEF1p-CUP1p, and TEF1p-DSE4p) allow tractable metabolic engineering.

11.
Cell Rep ; 16(3): 826-38, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27373154

RESUMO

Age can be reset during mitosis in both yeast and stem cells to generate a young daughter cell from an aged and deteriorated one. This phenomenon requires asymmetry-generating genes (AGGs) that govern the asymmetrical inheritance of aggregated proteins. Using a genome-wide imaging screen to identify AGGs in Saccharomyces cerevisiae, we discovered a previously unknown role for endocytosis, vacuole fusion, and the myosin-dependent adaptor protein Vac17 in asymmetrical inheritance of misfolded proteins. Overproduction of Vac17 increases deposition of aggregates into cytoprotective vacuole-associated sites, counteracts age-related breakdown of endocytosis and vacuole integrity, and extends replicative lifespan. The link between damage asymmetry and vesicle trafficking can be explained by a direct interaction between aggregates and vesicles. We also show that the protein disaggregase Hsp104 interacts physically with endocytic vesicle-associated proteins, such as the dynamin-like protein, Vps1, which was also shown to be required for Vac17-dependent sequestration of protein aggregates. These data demonstrate that two physiognomies of aging-reduced endocytosis and protein aggregation-are interconnected and regulated by Vac17.


Assuntos
Agregados Proteicos/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Vacúolos/metabolismo , Vacúolos/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Transporte Proteico/fisiologia , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/fisiologia
12.
Dev Cell ; 36(4): 453-61, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906740

RESUMO

Bacteria display an array of contact-dependent interaction systems that have evolved to facilitate direct cell-to-cell communication. We have previously identified a mode of bacterial communication mediated by nanotubes bridging neighboring cells. Here, we elucidate nanotube architecture, dynamics, and molecular components. Utilizing Bacillus subtilis as a model organism, we found that at low cell density, nanotubes exhibit remarkable complexity, existing as both intercellular tubes and extending tubes, with the latter frequently surrounding the cells in a "root-like" fashion. Observing nanotube formation in real time showed that these structures are formed in the course of minutes, displaying rapid movements. Utilizing a combination of super-resolution, light, and electron microscopy, we revealed that nanotubes are composed of chains of membranous segments harboring a continuous lumen. Furthermore, we discovered that a conserved calcineurin-like protein, YmdB, presents in nanotubes and is required for both nanotube production and intercellular molecular trade.


Assuntos
Bacillus subtilis/ultraestrutura , Fenômenos Fisiológicos Bacterianos , Nanotubos/ultraestrutura , Contagem de Células , Luz , Microscopia Eletrônica
13.
PLoS Genet ; 12(1): e1005809, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26800527

RESUMO

Cells are often exposed to physical or chemical stresses that can damage the structures of essential biomolecules. Stress-induced cellular damage can become deleterious if not managed appropriately. Rapid and adaptive responses to stresses are therefore crucial for cell survival. In eukaryotic cells, different stresses trigger post-translational modification of proteins with the small ubiquitin-like modifier SUMO. However, the specific regulatory roles of sumoylation in each stress response are not well understood. Here, we examined the sumoylation events that occur in budding yeast after exposure to hyperosmotic stress. We discovered by proteomic and biochemical analyses that hyperosmotic stress incurs the rapid and transient sumoylation of Cyc8 and Tup1, which together form a conserved transcription corepressor complex that regulates hundreds of genes. Gene expression and cell biological analyses revealed that sumoylation of each protein directs distinct outcomes. In particular, we discovered that Cyc8 sumoylation prevents the persistence of hyperosmotic stress-induced Cyc8-Tup1 inclusions, which involves a glutamine-rich prion domain in Cyc8. We propose that sumoylation protects against persistent inclusion formation during hyperosmotic stress, allowing optimal transcriptional function of the Cyc8-Tup1 complex.


Assuntos
Proteômica , Proteínas Repressoras/biossíntese , Sumoilação/genética , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Pressão Osmótica , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae
15.
Amyloid ; 22(2): 100-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053105

RESUMO

The effect of yeast red pigment on amyloid-ß (Aß) aggregation and fibril growth was studied in yeasts, fruit flies and in vitro. Yeast strains accumulating red pigment (red strains) contained less amyloid and had better survival rates compared to isogenic strains without red pigment accumulation (white strains). Confocal and fluorescent microscopy was used to visualise fluorescent Aß-GFP aggregates. Yeast cells containing less red pigment had more Aß-GFP aggregates despite the lower level of overall GFP fluorescence. Western blot analysis with anti-GFP, anti-Aß and A11 antibodies also revealed that red cells contained a considerably lower amount of Aß GFP aggregates as compared to white cells. Similar results were obtained with exogenous red pigment that was able to penetrate yeast cells. In vitro experiments with thioflavine and TEM showed that red pigment effectively decreased Aß fibril growth. Transgenic flies expressing Aß were cultivated on medium containing red and white isogenic yeast strains. Flies cultivated on red strains had a significant decrease in Aß accumulation levels and brain neurodegeneration. They also demonstrated better memory and learning indexes and higher locomotor ability.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Saccharomyces cerevisiae/metabolismo , Doença de Alzheimer/patologia , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Drosophila melanogaster , Citometria de Fluxo , Atividade Motora/fisiologia , Fragmentos de Peptídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/patogenicidade
16.
Structure ; 23(7): 1169-78, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26027734

RESUMO

The human von Hippel-Lindau (VHL) tumor suppressor is a marginally stable protein previously used as a model substrate of eukaryotic refolding and degradation pathways. When expressed in the absence of its cofactors, VHL cannot fold and is quickly degraded by the quality control machinery of the cell. We combined computational methods with in vivo experiments to examine the basis of the misfolding propensity of VHL. By expressing a set of randomly mutated VHL sequences in yeast, we discovered a more stable mutant form. Subsequent modeling suggested the mutation had caused a conformational change affecting cofactor and chaperone interaction, and this hypothesis was then confirmed by additional knockout and overexpression experiments targeting a yeast cofactor homolog. These findings offer a detailed structural basis for the modulation of quality control fate in a model misfolded protein and highlight burial mode modeling as a rapid means to detect functionally important conformational changes in marginally stable globular domains.


Assuntos
Proteína Supressora de Tumor Von Hippel-Lindau/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Estabilidade Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Saccharomyces cerevisiae , Proteína Supressora de Tumor Von Hippel-Lindau/biossíntese , Proteína Supressora de Tumor Von Hippel-Lindau/genética
17.
Dev Cell ; 33(5): 603-10, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26004510

RESUMO

Exposing cells to folding stress causes a subset of their proteins to misfold and accumulate in inclusion bodies (IBs). IB formation and clearance are both active processes, but little is known about their mechanism. To shed light on this issue, we performed a screen with over 4,000 fluorescently tagged yeast proteins for co-localization with a model misfolded protein that marks IBs during folding stress. We identified 13 proteins that co-localize to IBs. Remarkably, one of these IB proteins, the uncharacterized and conserved protein Iml2, exhibited strong physical interactions with lipid droplet (LD) proteins. Indeed, we here show that IBs and LDs are spatially and functionally linked. We further demonstrate a mechanism for IB clearance via a sterol-based metabolite emanating from LDs. Our findings therefore uncover a function for Iml2 and LDs in regulating a critical stage of cellular proteostasis.


Assuntos
Fenômenos Fisiológicos Celulares , Citosol/metabolismo , Corpos de Inclusão/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Imunoprecipitação , Esteróis/metabolismo
18.
Cell Mol Life Sci ; 72(3): 401-415, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25283146

RESUMO

Neurodegenerative diseases and other proteinopathies constitute a class of several dozen illnesses etiologically linked to pathological protein misfolding and aggregation. Because of this strong association with disease pathology, cell death, and aging, accumulation of proteins in aggregates or aggregation-associated structures (inclusions) has come to be regarded by many as a deleterious process, to be avoided if possible. Recent work has led us to see inclusion structures and disordered aggregate-like protein mixtures (which we call dynamic droplets) in a new light: not necessarily as a result of a pathological breakdown of cellular order, but as an elaborate cellular architecture regulating function and stress response. In this review, we discuss what is currently known about the role of inclusion structures in cellular homeostasis, stress response, toxicity, and disease. We will focus on possible mechanisms of aggregate toxicity, in contrast to the homeostatic function of several inclusion structures.


Assuntos
Envelhecimento/fisiologia , Homeostase/fisiologia , Corpos de Inclusão/patologia , Corpos de Inclusão/fisiologia , Modelos Biológicos , Agregados Proteicos/fisiologia , Deficiências na Proteostase/fisiopatologia , Estresse Fisiológico/fisiologia , Animais , Humanos
19.
PLoS Genet ; 10(5): e1004302, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810576

RESUMO

Alpha-synuclein (aSyn) is the main component of proteinaceous inclusions known as Lewy bodies (LBs), the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Although aSyn is phosphorylated at low levels under physiological conditions, it is estimated that ∼ 90% of aSyn in LBs is phosphorylated at S129 (pS129). Nevertheless, the significance of pS129 in the biology of aSyn and in PD pathogenesis is still controversial. Here, we harnessed the power of budding yeast in order to assess the implications of phosphorylation on aSyn cytotoxicity, aggregation and sub-cellular distribution. We found that aSyn is phosphorylated on S129 by endogenous kinases. Interestingly, phosphorylation reduced aSyn toxicity and the percentage of cells with cytosolic inclusions, in comparison to cells expressing mutant forms of aSyn (S129A or S129G) that mimic the unphosphorylated form of aSyn. Using high-resolution 4D imaging and fluorescence recovery after photobleaching (FRAP) in live cells, we compared the dynamics of WT and S129A mutant aSyn. While WT aSyn inclusions were very homogeneous, inclusions formed by S129A aSyn were larger and showed FRAP heterogeneity. Upon blockade of aSyn expression, cells were able to clear the inclusions formed by WT aSyn. However, this process was much slower for the inclusions formed by S129A aSyn. Interestingly, whereas the accumulation of WT aSyn led to a marked induction of autophagy, cells expressing the S129A mutant failed to activate this protein quality control pathway. The finding that the phosphorylation state of aSyn on S129 can alter the ability of cells to clear aSyn inclusions provides important insight into the role that this posttranslational modification may have in the pathogenesis of PD and other synucleinopathies, opening novel avenues for investigating the molecular basis of these disorders and for the development of therapeutic strategies.


Assuntos
Modelos Biológicos , Doença de Parkinson/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Autofagia , Humanos , Fosforilação
20.
Proc Natl Acad Sci U S A ; 111(22): 8049-54, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843142

RESUMO

Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.


Assuntos
Envelhecimento/metabolismo , Compartimento Celular/fisiologia , Corpos de Inclusão/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Vimentina/metabolismo , Actinas/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Células HeLa , Humanos , Filamentos Intermediários/metabolismo , Mamíferos , Camundongos , Microscopia Confocal/métodos , Mitose/fisiologia , Neuroblastoma , Saccharomyces cerevisiae , Fuso Acromático/metabolismo , Estresse Fisiológico/fisiologia , Vimentina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...