Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hepatol Commun ; 7(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972396

RESUMO

BACKGROUND AND AIMS: Cholangiopathies are an important cause of morbidity and mortality. Their pathogenesis and treatment remain unclear in part because of the lack of disease models relevant to humans. Three-dimensional biliary organoids hold great promise; however, the inaccessibility of their apical pole and the presence of extracellular matrix (ECM) limits their application. We hypothesized that signals coming from the extracellular matrix regulate organoids' 3-dimensional architecture and could be manipulated to generate novel organotypic culture systems. APPROACH AND RESULTS: Biliary organoids were generated from human livers and grown embedded into Culturex Basement Membrane Extract as spheroids around an internal lumen (EMB). When removed from the EMC, biliary organoids revert their polarity and expose the apical membrane on the outside (AOOs). Functional, immunohistochemical, and transmission electron microscope studies, along with bulk and single-cell transcriptomic, demonstrate that AOOs are less heterogeneous and show increased biliary differentiation and decreased expression of stem cell features. AOOs transport bile acids and have competent tight junctions. When cocultured with liver pathogenic bacteria (Enterococcus spp.), AOOs secrete a range of proinflammatory chemokines (ie, MCP1, IL8, CCL20, and IP-10). Transcriptomic analysis and treatment with a beta-1-integrin blocking antibody identified beta-1-integrin signaling as a sensor of the cell-extracellular matrix interaction and a determinant of organoid polarity. CONCLUSIONS: This novel organoid model can be used to study bile transport, interactions with pathobionts, epithelial permeability, cross talk with other liver and immune cell types, and the effect of matrix changes on the biliary epithelium and obtain key insights into the pathobiology of cholangiopathies.


Assuntos
Fígado , Organoides , Humanos , Diferenciação Celular , Organoides/metabolismo , Técnicas de Cocultura , Integrinas/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1865(5): 920-928, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30264693

RESUMO

Liver diseases negatively impact the quality of life and survival of patients, and often require liver transplantation in cases that progress to organ failure. Understanding the cellular and molecular mechanisms of liver development and pathogenesis has been a challenging task, in part for the lack of adequate cellular models directly relevant to the human diseases. Recent technological advances in the stem cell field have shown the potentiality of induced pluripotent stem cells (iPSC) and liver organoids as the next generation tool to model in vitro liver diseases. Hepatocyte-like cells and cholangiocyte are currently being generated from skin fibroblasts and mononuclear blood cells reprogrammed into iPSC and have been successfully used for disease modeling, drug testing and gene editing, with the hope to be able to find application also in regenerative medicine. Protocols to generate other liver cell types are still under development, but the field is advancing rapidly. On the other end, liver cells can now be isolated from liver specimens (liver explants or liver biopsies) and cultured in specific conditions to form polarized 3D organoids. The purpose of this review is to summarize all these recent technological advances and their potential applications but also to analyze the current issues to be addressed before the technology can reach its full potential.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Hepatopatias/metabolismo , Organoides/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Edição de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/patologia , Hepatopatias/genética , Hepatopatias/patologia , Hepatopatias/terapia , Organoides/patologia , Cultura Primária de Células/métodos
3.
Biochim Biophys Acta Mol Basis Dis ; 1865(5): 965-969, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071276

RESUMO

Liver disease is a severe complication in patients with Cystic Fibrosis (CF), a genetic disease caused by mutations in the gene encoding for cystic fibrosis transmembrane conductance regulator (CFTR) channel. The sequence of events leading to CFLD is still unclear and has limited the development of more specific treatments other than the bile acid UDCA. However, in the last twenty years, several gaps have been filled, which have mainly been possible due to the availability of different animal models that mimic CF. CF mice, although they lack a spontaneous liver manifestation, have been essential to better understand the multiple functions of CFTR expression on the apical membrane of cholangiocytes, from chloride channel to regulator of epithelial innate immunity. Additionally, we have learned that the gut microbiota might be a pathogenetic factor for the development of liver disease. The recent creation of novel CF animal models (i.e. pig and ferret) that better reproduce the human disease, will allow for comparative studies with species that spontaneously develop the liver disease and will hopefully lead to novel therapeutic treatments. In this review, we have compared and summarized the main features of the current available CF animal models and their applicability for the study of the liver phenotype.


Assuntos
Fibrose Cística/complicações , Modelos Animais de Doenças , Edição de Genes/métodos , Hepatopatias/etiologia , Animais , Fibrose Cística/genética , Fibrose Cística/terapia , Microbioma Gastrointestinal , Terapia Genética/métodos , Humanos , Imunidade Inata , Hepatopatias/genética , Hepatopatias/terapia
4.
Hepatology ; 67(3): 972-988, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28836688

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR), the channel mutated in cystic fibrosis (CF), is expressed by the biliary epithelium (i.e., cholangiocytes) of the liver. Progressive clinical liver disease (CF-associated liver disease; CFLD) occurs in around 10% of CF patients and represents the third leading cause of death. Impaired secretion and inflammation contribute to CFLD; however, the lack of human-derived experimental models has hampered the understanding of CFLD pathophysiology and the search for a cure. We have investigated the cellular mechanisms altered in human CF cholangiocytes using induced pluripotent stem cells (iPSCs) derived from healthy controls and a ΔF508 CFTR patient. We have devised a novel protocol for the differentiation of human iPSC into polarized monolayers of cholangiocytes. Our results show that iPSC-cholangiocytes reproduced the polarity and the secretory function of the biliary epithelium. Protein kinase A/cAMP-mediated fluid secretion was impaired in ΔF508 cholangiocytes and negligibly improved by VX-770 and VX-809, two small molecule drugs used to correct and potentiate ΔF508 CFTR. Moreover, ΔF508 cholangiocytes showed increased phosphorylation of Src kinase and Toll-like receptor 4 and proinflammatory changes, including increased nuclear factor kappa-light-chain-enhancer of activated B cells activation, secretion of proinflammatory chemokines (i.e., monocyte chemotactic protein 1 and interleukin-8), as well as alterations of the F-actin cytoskeleton. Treatment with Src inhibitor (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine) decreased the inflammatory changes and improved cytoskeletal defects. Inhibition of Src, along with administration of VX-770 and VX-809, successfully restored fluid secretion to normal levels. CONCLUSION: Our findings have strong translational potential and indicate that targeting Src kinase and decreasing inflammation may increase the efficacy of pharmacological therapies aimed at correcting the basic ΔF508 defect in CF liver patients. These studies also demonstrate the promise of applying iPSC technology in modeling human cholangiopathies. (Hepatology 2018;67:972-988).


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/fisiopatologia , Pirimidinas/farmacologia , Quinolonas/farmacologia , Quinases da Família src/metabolismo , Animais , Sistema Biliar/citologia , Sistema Biliar/efeitos dos fármacos , Sistema Biliar/patologia , Técnicas de Cultura de Células , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Citocinas/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Inflamação/metabolismo , Camundongos , Microscopia Confocal , Transdução de Sinais , Quinases da Família src/antagonistas & inibidores
5.
Hepatology ; 67(5): 1903-1919, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29140564

RESUMO

Congenital hepatic fibrosis (CHF), a genetic disease caused by mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, encoding for the protein fibrocystin/polyductin complex, is characterized by biliary dysgenesis, progressive portal fibrosis, and a protein kinase A-mediated activating phosphorylation of ß-catenin at Ser675. Biliary structures of Pkhd1del4/del4 mice, a mouse model of CHF, secrete chemokine (C-X-C motif) ligand 10 (CXCL10), a chemokine able to recruit macrophages. The aim of this study was to clarify whether CXCL10 plays a pathogenetic role in disease progression in CHF/Caroli disease and to understand the mechanisms leading to increased CXCL10 secretion. We demonstrate that treatment of Pkhd1del4/del4 mice for 3 months with AMG-487, an inhibitor of CXC chemokine receptor family 3, the cognate receptor of CXCL10, reduces the peribiliary recruitment of alternative activated macrophages (cluster of differentiation 45+ F4/80+ cells), spleen size, liver fibrosis (sirius red), and cyst growth (cytokeratin 19-positive area), consistent with a pathogenetic role of CXCL10. Furthermore, we show that in fibrocystin/polyductin complex-defective cholangiocytes, isolated from Pkhd1del4/del4 mice, CXCL10 production is mediated by Janus kinase/signal transducer and activator of transcription 3 in response to interleukin 1beta (IL-1ß) and ß-catenin. Specifically, IL-1ß promotes signal transducer and activator of transcription 3 phosphorylation, whereas ß-catenin promotes its nuclear translocation. Increased pro-IL-1ß was regulated by nuclear factor kappa-light-chain-enhancer of activated B cells, and increased secretion of active IL-1ß was mediated by the activation of Nod-like receptors, pyrin domain containing 3 inflammasome (increased expression of caspase 1 and Nod-like receptors, pyrin domain containing 3). CONCLUSION: In fibrocystin/polyductin complex-defective cholangiocytes, ß-catenin and IL-1ß are responsible for signal transducer and activator of transcription 3-dependent secretion of CXCL10; in vivo experiments show that the CXCL10/CXC chemokine receptor family 3 axis prevents the recruitment of macrophages, reduces inflammation, and halts the progression of the disease; the increased production of IL-1ß highlights the autoinflammatory nature of CHF and may open novel therapeutic avenues. (Hepatology 2018;67:1903-1919).


Assuntos
Quimiocina CXCL10/metabolismo , Doenças Genéticas Inatas/metabolismo , Interleucina-1beta/metabolismo , Cirrose Hepática/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Fígado/metabolismo , Fígado/patologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR3/metabolismo , Transdução de Sinais
6.
Genome Res ; 27(4): 512-523, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28235832

RESUMO

Few studies have been conducted to understand post-zygotic accumulation of mutations in cells of the healthy human body. We reprogrammed 32 skin fibroblast cells from families of donors into human induced pluripotent stem cell (hiPSC) lines. The clonal nature of hiPSC lines allows a high-resolution analysis of the genomes of the founder fibroblast cells without being confounded by the artifacts of single-cell whole-genome amplification. We estimate that on average a fibroblast cell in children has 1035 mostly benign mosaic SNVs. On average, 235 SNVs could be directly confirmed in the original fibroblast population by ultradeep sequencing, down to an allele frequency (AF) of 0.1%. More sensitive droplet digital PCR experiments confirmed more SNVs as mosaic with AF as low as 0.01%, suggesting that 1035 mosaic SNVs per fibroblast cell is the true average. Similar analyses in adults revealed no significant increase in the number of SNVs per cell, suggesting that a major fraction of mosaic SNVs in fibroblasts arises during development. Mosaic SNVs were distributed uniformly across the genome and were enriched in a mutational signature previously observed in cancers and in de novo variants and which, we hypothesize, is a hallmark of normal cell proliferation. Finally, AF distribution of mosaic SNVs had distinct narrow peaks, which could be a characteristic of clonal cell selection, clonal expansion, or both. These findings reveal a large degree of somatic mosaicism in healthy human tissues, link de novo and cancer mutations to somatic mosaicism, and couple somatic mosaicism with cell proliferation.


Assuntos
Evolução Clonal , Variações do Número de Cópias de DNA , Fibroblastos/citologia , Mosaicismo , Acúmulo de Mutações , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Pele/citologia
7.
Hepatology ; 64(6): 2118-2134, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27629435

RESUMO

In the liver, the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) regulates bile secretion and other functions at the apical membrane of biliary epithelial cells (i.e., cholangiocytes). CF-related liver disease is a major cause of death in patients with CF. CFTR dysfunction affects innate immune pathways, generating a para-inflammatory status in the liver and other epithelia. This study investigates the mechanisms linking CFTR to toll-like receptor 4 activity. We found that CFTR is associated with a multiprotein complex at the apical membrane of normal mouse cholangiocytes, with proteins that negatively control Rous sarcoma oncogene cellular homolog (Src) activity. In CFTR-defective cholangiocytes, Src tyrosine kinase self-activates and phosphorylates toll-like receptor 4, resulting in activation of nuclear factor kappa-light-chain-enhancer of activated B cells and increased proinflammatory cytokine production in response to endotoxins. This Src/nuclear factor kappa-light-chain-enhancer of activated B cells-dependent inflammatory process attracts inflammatory cells but also generates changes in the apical junctional complex and loss of epithelial barrier function. Inhibition of Src decreased the inflammatory response of CF cholangiocytes to lipopolysaccharide, rescued the junctional defect in vitro, and significantly attenuated endotoxin-induced biliary damage and inflammation in vivo (Cftr knockout mice). CONCLUSION: These findings reveal a novel function of CFTR as a regulator of toll-like receptor 4 responses and cell polarity in biliary epithelial cells; this mechanism is pathogenetic, as shown by the protective effects of Src inhibition in vivo, and may be a novel therapeutic target in CF-related liver disease and other inflammatory cholangiopathies. (Hepatology 2016;64:2118-2134).


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Inflamação/etiologia , Receptor 4 Toll-Like/fisiologia , Quinases da Família src/fisiologia , Animais , Ductos Biliares/citologia , Ductos Biliares/enzimologia , Membrana Celular , Células Cultivadas , Fibrose Cística , Epitélio , Camundongos , Permeabilidade
8.
Hepatology ; 63(3): 965-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26645994

RESUMO

UNLABELLED: Congenital hepatic fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure; however, the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1(del4/del4)) mouse, which is orthologous of CHF, we show that Pkhd1(del4/del4) cholangiocytes are characterized by a ß-catenin-dependent secretion of a range of chemokines, including chemokine (C-X-C motif) ligands 1, 10, and 12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1(del4/del4) cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvß6 integrin, an activator of latent local transforming growth factor-ß1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. CONCLUSION: Fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment, and collagen deposition; these findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis, and macrophage polarization over time.


Assuntos
Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Doenças Genéticas Inatas/imunologia , Cirrose Hepática/imunologia , Macrófagos/fisiologia , Receptores de Superfície Celular/deficiência , Animais , Antígenos de Neoplasias/metabolismo , Ácido Clodrônico , Colágeno/metabolismo , Modelos Animais de Doenças , Doenças Genéticas Inatas/metabolismo , Integrinas/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Miofibroblastos/fisiologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Hepatology ; 62(5): 1551-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26199136

RESUMO

UNLABELLED: Cystic fibrosis-associated liver disease is a chronic cholangiopathy that negatively affects the quality of life of cystic fibrosis patients. In addition to reducing biliary chloride and bicarbonate secretion, up-regulation of toll-like receptor 4/nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB)-dependent immune mechanisms plays a major role in the pathogenesis of cystic fibrosis-associated liver disease and may represent a therapeutic target. Nuclear receptors are transcription factors that regulate several intracellular functions. Some nuclear receptors, including peroxisome proliferator-activated receptor-γ (PPAR-γ), may counterregulate inflammation in a tissue-specific manner. In this study, we explored the anti-inflammatory effect of PPAR-γ stimulation in vivo in cystic fibrosis transmembrane conductance regulator (Cftr) knockout mice exposed to dextran sodium sulfate and in vitro in primary cholangiocytes isolated from wild-type and from Cftr-knockout mice exposed to lipopolysaccharide. We found that in CFTR-defective biliary epithelium expression of PPAR-γ is increased but that this does not result in increased receptor activity because the availability of bioactive ligands is reduced. Exogenous administration of synthetic agonists of PPAR-γ (pioglitazone and rosiglitazone) up-regulates PPAR-γ-dependent genes, while inhibiting the activation of NF-κB and the secretion of proinflammatory cytokines (lipopolysaccharide-induced CXC chemokine, monocyte chemotactic protein-1, macrophage inflammatory protein-2, granulocyte colony-stimulating factor, keratinocyte chemoattractant) in response to lipopolysaccharide. PPAR-γ agonists modulate NF-κB-dependent inflammation by up-regulating nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha, a negative regulator of NF-κB. Stimulation of PPAR-γ in vivo (rosiglitazone) significantly attenuates biliary damage and inflammation in Cftr-knockout mice exposed to a dextran sodium sulfate-induced portal endotoxemia. CONCLUSION: These studies unravel a novel function of PPAR-γ in controlling biliary epithelium inflammation and suggest that impaired activation of PPAR-γ contributes to the chronic inflammatory state of CFTR-defective cholangiocytes.


Assuntos
Colangite/etiologia , Fibrose Cística/patologia , NF-kappa B/fisiologia , PPAR gama/fisiologia , Animais , Células Cultivadas , Citocinas/biossíntese , Epitélio/metabolismo , Proteínas I-kappa B/fisiologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Inibidor de NF-kappaB alfa , PPAR gama/agonistas
10.
Cell ; 162(2): 375-390, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186191

RESUMO

Autism spectrum disorder (ASD) is a disorder of brain development. Most cases lack a clear etiology or genetic basis, and the difficulty of re-enacting human brain development has precluded understanding of ASD pathophysiology. Here we use three-dimensional neural cultures (organoids) derived from induced pluripotent stem cells (iPSCs) to investigate neurodevelopmental alterations in individuals with severe idiopathic ASD. While no known underlying genomic mutation could be identified, transcriptome and gene network analyses revealed upregulation of genes involved in cell proliferation, neuronal differentiation, and synaptic assembly. ASD-derived organoids exhibit an accelerated cell cycle and overproduction of GABAergic inhibitory neurons. Using RNA interference, we show that overexpression of the transcription factor FOXG1 is responsible for the overproduction of GABAergic neurons. Altered expression of gene network modules and FOXG1 are positively correlated with symptom severity. Our data suggest that a shift toward GABAergic neuron fate caused by FOXG1 is a developmental precursor of ASD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/patologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Telencéfalo/embriologia , Feminino , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Megalencefalia/genética , Megalencefalia/patologia , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Organoides/patologia , Telencéfalo/patologia
11.
Eur J Hum Genet ; 23(2): 195-201, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24916645

RESUMO

Rett syndrome is a monogenic disease due to de novo mutations in either MECP2 or CDKL5 genes. In spite of their involvement in the same disease, a functional interaction between the two genes has not been proven. MeCP2 is a transcriptional regulator; CDKL5 encodes for a kinase protein that might be involved in the regulation of gene expression. Therefore, we hypothesized that mutations affecting the two genes may lead to similar phenotypes by dysregulating the expression of common genes. To test this hypothesis we used induced pluripotent stem (iPS) cells derived from fibroblasts of one Rett patient with a MECP2 mutation (p.Arg306Cys) and two patients with mutations in CDKL5 (p.Gln347Ter and p.Thr288Ile). Expression profiling was performed in CDKL5-mutated cells and genes of interest were confirmed by real-time RT-PCR in both CDKL5- and MECP2-mutated cells. The only major change in gene expression common to MECP2- and CDKL5-mutated cells was for GRID1, encoding for glutamate D1 receptor (GluD1), a member of the δ-family of ionotropic glutamate receptors. GluD1 does not form AMPA or NMDA glutamate receptors. It acts like an adhesion molecule by linking the postsynaptic and presynaptic compartments, preferentially inducing the inhibitory presynaptic differentiation of cortical neurons. Our results demonstrate that GRID1 expression is downregulated in both MECP2- and CDKL5-mutated iPS cells and upregulated in neuronal precursors and mature neurons. These data provide novel insights into disease pathophysiology and identify possible new targets for therapeutic treatment of Rett syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Neurogênese , Proteínas Serina-Treonina Quinases/genética , Receptores de Glutamato/genética , Síndrome de Rett/genética , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Glutamato/metabolismo , Síndrome de Rett/metabolismo
12.
Pathol Oncol Res ; 18(3): 703-12, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22278416

RESUMO

Retinoblastoma is the most common primary intraocular malignancy in children. Two step inactivation of RB1 (M1-M2) represents the key event in the pathogenesis of retinoblastoma but additional genetic and epigenetic events (M3-Mn) are required for tumor development. In the present study, we employed Methylation Specific Multiplex Ligation Probe Assay to investigate methylation status and copy number changes of 25 and 39 oncosuppressor genes, respectively. This technique was applied to analyse 12 retinoblastomas (5 bilateral and 7 unilateral) and results were compared to corresponding normal retina. We identified hypermethylation in seven new genes: MSH6 (50%), CD44 (42%), PAX5 (42%), GATA5 (25%), TP53 (8%), VHL (8%) and GSTP1 (8%) and we confirmed the previously reported hypermethylation of MGMT (58%), RB1 (17%) and CDKN2 (8%). These genes belong to key pathways including DNA repair, pRB and p53 signalling, transcriptional regulation, protein degradation, cell-cell interaction, cellular adhesion and migration. In the same group of retinoblastomas, a total of 29 copy number changes (19 duplications and 10 deletions) have been identified. Interestingly, we found deletions of the following oncosuppressor genes that might contribute to drive retinoblastoma tumorigenesis: TP53, CDH13, GATA5, CHFR, TP73 and IGSF4. The present data highlight the importance of epigenetic changes in retinoblastoma and indicate seven hypermethylated oncosuppressors never associated before to retinoblastoma pathogenesis. This study also confirms the presence of copy number variations in retinoblastoma, expecially in unilateral cases (mean 3 ± 1.3) where these changes were found more frequently respect to bilateral cases (mean 1.4 ± 1.1).


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Epigenômica , Reação em Cadeia da Polimerase Multiplex/métodos , Retina/metabolismo , Retinoblastoma/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Regiões Promotoras Genéticas/genética , Adulto Jovem
13.
J Hum Genet ; 56(9): 685-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21814224

RESUMO

The tumor suppressor p53 and its negative regulator MDM2 have crucial roles in a variety of cellular functions such as the control of the cell cycle, senescence, genome stability and apoptosis, and are frequently deregulated in carcinogenesis. Previous studies have highlighted the contribution of the common functional polymorphisms p53 p.Arg72Pro and MDM2 309SNP to the risk of both common cancers and Li-Fraumeni syndrome. Their possible role in retinoblastoma has recently been addressed by Castéra et al, who however only studied the MDM2 309SNP. Here, for the first time, we analyzed both single nucleotide polymorphisms (SNPs) in a case-control study of 111 Italian hereditary retinoblastoma patients. We found a significant association of the p53 Pro/Pro genotype with the disease (odds ratio=3.58, P=0.002). The MDM2 309SNP showed a weak negative association of allele G that deserves further investigation. These findings further support the hypothesis that genetic variability of the p53 pathway contributes to the individual susceptibility to retinoblastoma, as shown for Li-Fraumeni syndrome and a variety of non-hereditary cancers.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética , Estudos de Casos e Controles , Pré-Escolar , Frequência do Gene , Genótipo , Humanos , Lactente , Itália , Análise de Sequência de DNA/métodos
14.
Eur J Hum Genet ; 19(12): 1246-55, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21750574

RESUMO

Rett syndrome (RTT) is a progressive neurologic disorder representing one of the most common causes of mental retardation in females. To date mutations in three genes have been associated with this condition. Classic RTT is caused by mutations in the MECP2 gene, whereas variants can be due to mutations in either MECP2 or FOXG1 or CDKL5. Mutations in CDKL5 have been identified both in females with the early onset seizure variant of RTT and in males with X-linked epileptic encephalopathy. CDKL5 is a kinase protein highly expressed in neurons, but its exact function inside the cell is unknown. To address this issue we established a human cellular model for CDKL5-related disease using the recently developed technology of induced pluripotent stem cells (iPSCs). iPSCs can be expanded indefinitely and differentiated in vitro into many different cell types, including neurons. These features make them the ideal tool to study disease mechanisms directly on the primarily affected neuronal cells. We derived iPSCs from fibroblasts of one female with p.Q347X and one male with p.T288I mutation, affected by early onset seizure variant and X-linked epileptic encephalopathy, respectively. We demonstrated that female CDKL5-mutated iPSCs maintain X-chromosome inactivation and clones express either the mutant CDKL5 allele or the wild-type allele that serve as an ideal experimental control. Array CGH indicates normal isogenic molecular karyotypes without detection of de novo CNVs in the CDKL5-mutated iPSCs. Furthermore, the iPS cells can be differentiated into neurons and are thus suitable to model disease pathogenesis in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Síndrome de Rett/genética , Diferenciação Celular , Criança , Pré-Escolar , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Mutação , Neurônios/citologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Síndrome de Rett/diagnóstico , Inativação do Cromossomo X
15.
Am J Hum Genet ; 86(2): 254-61, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137777

RESUMO

Frank-Ter Haar syndrome (FTHS), also known as Ter Haar syndrome, is an autosomal-recessive disorder characterized by skeletal, cardiovascular, and eye abnormalities, such as increased intraocular pressure, prominent eyes, and hypertelorism. We have conducted homozygosity mapping on patients representing 12 FTHS families. A locus on chromosome 5q35.1 was identified for which patients from nine families shared homozygosity. For one family, a homozygous deletion mapped exactly to the smallest region of overlapping homozygosity, which contains a single gene, SH3PXD2B. This gene encodes the TKS4 protein, a phox homology (PX) and Src homology 3 (SH3) domain-containing adaptor protein and Src substrate. This protein was recently shown to be involved in the formation of actin-rich membrane protrusions called podosomes or invadopodia, which coordinate pericellular proteolysis with cell migration. Mice lacking Tks4 also showed pronounced skeletal, eye, and cardiac abnormalities and phenocopied the majority of the defects associated with FTHS. These findings establish a role for TKS4 in FTHS and embryonic development. Mutation analysis revealed five different homozygous mutations in SH3PXD2B in seven FTHS families. No SH3PXD2B mutations were detected in six other FTHS families, demonstrating the genetic heterogeneity of this condition. Interestingly however, dermal fibroblasts from one of the individuals without an SH3PXD2B mutation nevertheless expressed lower levels of the TKS4 protein, suggesting a common mechanism underlying disease causation.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Anormalidades do Olho/complicações , Cardiopatias Congênitas/complicações , Anormalidades Musculoesqueléticas/complicações , Mutação/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Pré-Escolar , Mapeamento Cromossômico , Anormalidades do Olho/genética , Feminino , Inativação Gênica , Cardiopatias Congênitas/genética , Homozigoto , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Anormalidades Musculoesqueléticas/genética , Proteínas de Transferência de Fosfolipídeos/química , Síndrome
16.
Cancer Sci ; 100(3): 465-71, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19183342

RESUMO

In retinoblastoma, two RB1 mutations are necessary for tumor development. Recurrent genomic rearrangements may represent subsequent events required for retinoblastoma progression. Array-comparative genomic hybridization was carried out in 18 eye samples, 10 from bilateral and eight from unilateral retinoblastoma patients. Two unilateral cases also showed areas of retinoma. The most frequent imbalance in retinoblastomas was 6p gain (40%), followed by gains at 1q12-q25.3, 2p24.3-p24.2, 9q22.2, and 9q33.1 and losses at 11q24.3, 13q13.2-q22.3, and 16q12.1-q21. Bilateral cases showed a lower number of imbalances than unilateral cases (P = 0.002). Unilateral cases were divided into low-level (< or = 4) and high-level (> or = 7) chromosomal instability groups. The first group presented with younger age at diagnosis (mean 511 days) compared with the second group (mean 1606 days). In one retinoma case ophthalmoscopically diagnosed as a benign lesion no rearrangements were detected, whereas the adjacent retinoblastoma displayed seven aberrations. The other retinoma case identified by retrospective histopathological examination shared three rearrangements with the adjacent retinoblastoma. Two other gene-free rearrangements were retinoma specific. One rearrangement, dup5p, was retinoblastoma specific and included the SKP2 gene. Genomic profiling indicated that the first retinoma was a pretumoral lesion, whereas the other represents a subclone of cells bearing 'benign' rearrangements overwhelmed by another subclone presenting aberrations with higher 'oncogenic' potential. In summary, the present study shows that bilateral and unilateral retinoblastoma have different chromosomal instability that correlates with the age of tumor onset in unilateral cases. This is the first report of genomic profiling in retinoma tissue, shedding light on the different nature of lesions named 'retinoma'.


Assuntos
Genes do Retinoblastoma , Neoplasias da Retina/genética , Proteína do Retinoblastoma/genética , Retinoblastoma/genética , Idade de Início , Anticorpos Anti-Idiotípicos , Pré-Escolar , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Lasers , Microdissecção , Mutação , Neoplasias da Retina/patologia , Retinoblastoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...