Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 669: 667-678, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38733878

RESUMO

HYPOTHESIS: Renal calculi (kidney stones) are mainly made by calcium oxalate and can cause different complications including malfunction of the kidney. The most important urinary stone inhibitors are citrate molecules. Unfortunately, the amount of citrate reaching the kidney after oral ingestion is low. We hypothesized that nanoparticles of polyallylamine hydrochloride (CIT-PAH) carrying citrate ions could simultaneously deliver citrates while PAH would complex oxalate triggering dissolution and removal of CaOx nanocrystals. EXPERIMENTS: We successfully prepared nanoparticles of citrate ions with polyallylamine hydrochloride (CIT-PAH), PAH with oxalate (OX-PAH) and characterize them by Small Angle X ray Scattering (SAXS), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and NMR. Dissolution of CaOx nanocrystals in presence of CIT-PAH have been followed with Wide Angle Xray Scattering (WAXS), DLS and Confocal Raman Microscopy. Raman spectroscopy was used to study the dissolution of crystals in synthetic urine samples. The release of citrate from CIT-PAH was followed by diffusion NMR. Molecular dynamics (MD) simulations were carried out to study the interaction of CIT and OX ions with PAH. FINDINGS: CIT-PAH nanoparticles dissolves CaOx nanocrystals as shown by NMR, DLS, TEM and WAXS in water and by Raman spectroscopy in artificial human urine. WAXS and Raman show that the crystal structure of CaOx disappears in the presence of CIT-PAH. DLS shows that the time required for CaOX dissolution will depend on the concentration of CIT-PAH NPs. NMR proves that citrate ions are released from the CIT PAH NPs during CaOX dissolution, MD simulations showed that oxalates exhibit a stronger interaction for PAH than citrate, explaining the removal of oxalate ions and replacement of the citrate in the polymer nanoparticles.

2.
ACS Appl Bio Mater ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775109

RESUMO

The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.

3.
J Colloid Interface Sci ; 665: 1091-1101, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548506

RESUMO

HYPOTHESIS: Understanding and manipulating the oil/water interface is important across various industries, including food, pharmaceuticals, cosmetics, and detergents. Many of these processes occur under elevated pH conditions in buffer systems, where base-catalyzed hydrolysis of triglyceride ester bonds leads to amphiphilic reaction products such as fatty acids. EXPERIMENTS: Here, pH-triggered alterations of the triolein/water interface are analyzed in the presence of phosphate (PB) and tris(hydroxymethyl)aminomethane (TRIS). Ellipsometry at the liquid/liquid interface, tensiometry, and scanning small angle X-ray scattering are used to study the formation of structures at the oil/water interface. Confocal Raman microscopy, nuclear magnetic resonance spectroscopy, and in silico modeling analyze compositional changes in the interfacial region. FINDINGS: pH and buffer ions were discovered to significantly modify the triglyceride/water interface, contrary to the decane/water control. Decreasing interfacial tensions from 32.4 to 2.2 mN/m upon pH increase from 6.5 to 9.5 is seen with multilamellar interfacial layers forming at pH around 9.0 in the presence of TRIS. Oleic acid from triolein hydrolysis and its further interaction with TRIS is held responsible for this. The new understanding can guide the design of pH- and ion-responsive functional materials and optimize industrial processes involving triglyceride/water interfaces.

4.
J Colloid Interface Sci ; 662: 446-459, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364470

RESUMO

Lipid nanoparticles own a remarkable potential in nanomedicine, only partially disclosed. While the clinical use of liposomes and cationic lipid-nucleic acid complexes is well-established, liquid lipid nanoparticles (nanoemulsions), solid lipid nanoparticles, and nanostructured lipid carriers have even greater possibilities. However, they face obstacles in being used in clinics due to a lack of understanding about the molecular mechanisms controlling their drug loading and release, interactions with the biological environment (such as the protein corona), and shelf-life stability. To create effective drug delivery carriers and successfully translate bench research to clinical settings, it is crucial to have a thorough understanding of the internal structure of lipid nanoparticles. Through synchrotron small-angle X-ray scattering experiments, we determined the spatial distribution and internal structure of the nanoparticles' lipid, surfactant, and the bound water in them. The nanoparticles themselves have a barrel-like shape that consists of coplanar lipid platelets (specifically cetyl palmitate) that are covered by loosely spaced polysorbate 80 surfactant molecules, whose polar heads retain a large amount of bound water. To reduce the interface cost of bound water with unbound water without stacking, the platelets collapse onto each other. This internal structure challenges the classical core-shell model typically used to describe solid lipid nanoparticles and could play a significant role in drug loading and release, biological fluid interaction, and nanoparticle stability, making our findings valuable for the rational design of lipid-based nanoparticles.


Assuntos
Lipossomos , Nanopartículas , Raios X , Nanopartículas/química , Portadores de Fármacos/química , Tensoativos/química , Lipídeos/química , Água/química , Tamanho da Partícula
5.
Monatsh Chem ; 154(12): 1369-1381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020486

RESUMO

Perylene monoimide based electron acceptors have great properties for use in organic solar cells, like thermal stability, strong absorption, and simple synthesis. However, they typically exhibit low values for the dielectric permittivity. This hinders efficient exciton dissociation, limiting the achievable power conversion efficiencies. In this work, we present the synthesis and utilization of two new acceptor-donor-acceptor (A-D-A) molecules, comprising perylene monoimide as electron withdrawing A unit. Oligo ethylene glycol side chain modified carbazole (PMI-[C-OEG]) and fluorene (PMI-[F-OEG]) linkers were used as electron rich D units, respectively. The polar side chains are expected to increase the polarizability of the molecules and, thus, their permittivity according to the Clausius-Mossotti relationship. We found that the incorporation of glycol chains improved the dielectric properties of both materials in comparison to the reference compounds with alkyl chains. The permittivity increased by 18% from 3.17 to 3.75 for the carbazole-based non-fullerene acceptor PMI-[C-OEG] and by 12% from 3.10 to 3.47 for the fluorene-based acceptor PMI-[F-OEG]. The fabricated solar cells revealed power conversion efficiencies of 3.71 ± 0.20% (record 3.92%) with PMI-[C-OEG], and 1.21 ± 0.06% (record 1.51%) with PMI-[F-OEG]. Supplementary Information: The online version contains supplementary material available at 10.1007/s00706-022-02956-2.

6.
Chem Sci ; 14(43): 12056-12067, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969597

RESUMO

3D-oriented metal-organic framework (MOF) films and patterns have recently emerged as promising platforms for sensing and photonic applications. These oriented polycrystalline materials are typically prepared by heteroepitaxial growth from aligned inorganic nanostructures and display anisotropic functional properties, such as guest molecule alignment and polarized fluorescence. However, to identify suitable conditions for the integration of these 3D-oriented MOF superstructures into functional devices, the effect of water (gaseous and liquid) on different frameworks should be determined. We note that the hydrolytic stability of these heteroepitaxially grown MOF films is currently unexplored. In this work, we present an in-depth analysis of the structural evolution of aligned 2D and 3D Cu-based MOFs grown from Cu(OH)2 coatings. Specifically, 3D-oriented Cu2L2 and Cu2L2DABCO films (L = 1,4-benzenedicarboxylate, BDC; biphenyl-4,4-dicarboxylate, BPDC; DABCO = 1,4-diazabicyclo[2.2.2]octane) were exposed to 50% relative humidity (RH), 80% RH and liquid water. The combined use of X-ray diffraction, infrared spectroscopy, and scanning electron microscopy shows that the sensitivity towards humid environments critically depends on the presence of the DABCO pillar ligand. While oriented films of 2D MOF layers stay intact upon exposure to all levels of humidity, hydrolysis of Cu2L2DABCO is observed. In addition, we report that in environments with high water content, 3D-oriented Cu2(BDC)2DABCO recrystallizes as 3D-oriented Cu2(BDC)2. The heteroepitaxial MOF-to-MOF transformation mechanism was studied with in situ synchrotron experiments, time-resolved AFM measurements, and electron diffraction. These findings provide valuable information on the stability of oriented MOF films for their application in functional devices and highlight the potential for the fabrication of 3D-oriented superstructures via MOF-to-MOF transformations.

7.
ACS Appl Mater Interfaces ; 15(40): 47604-47614, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769130

RESUMO

We have used in operando grazing incidence small-angle X-ray scattering (GISAXS) to monitor structural changes during templated electrodeposition of mesoporous platinum films on gold electrodes from a ternary lyotropic liquid crystalline mixture of aqueous hexachloroplatinic acid and the diblock copolymer surfactant Brij56. While the cylindrical micelles of the lyotropic liquid crystal (LLC) in the hexagonal phase have a center-to-center distance of 7.5 nm with a preferential alignment parallel to the electrode surface, the electrodeposited platinum films contain highly ordered mesopores arranged in a 2D hexagonal structure, with a center-to-center distance of about 8.5 nm and a preferential orientation perpendicular to the electrode surface. The progression of structural changes of the LLC template and the deposited mesoporous Pt could be monitored for the first time in operando by GISAXS: within the first 14 s of deposition, a nucleation burst of Pt coincides with a loss of preferential alignment of the LLC. Initially, the morphology of the 2-dimensionally nucleated Pt replicates the Au substrate. During the following 5 to 7 min, the growth morphology of the Pt film changes, and vertically aligned mesopores form. Our results indicate mutual interaction between the species involved in the electrodeposition and the LLC template, leading to a partial loss of horizontal orientation of the LLC during Pt nucleation before vertical rearrangement of the micelles to the electrode surface. The vertically aligned mesopores in the Pt and the possibility to produce freestanding films make these materials interesting in fields such as electrocatalysis, energy harvesting, and nanofluidics.

8.
ACS Appl Mater Interfaces ; 15(35): 41624-41633, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37623297

RESUMO

Cu3BiS3 thin films are fabricated via spin coating of precursor solutions containing copper and bismuth xanthates onto planar glass substrates or mesoporous metal oxide scaffolds followed by annealing at 300 °C to convert the metal xanthates into copper bismuth sulfide. Detailed insights into the film formation are gained from time-resolved simultaneous small and wide angle X-ray scattering measurements. The Cu3BiS3 films show a high absorption coefficient and a band gap of 1.55 eV, which makes them attractive for application in photovoltaic devices. Transient absorption spectroscopic measurements reveal that charge generation yields in mesoporous TiO2/Cu3BiS3 heterojunctions can be significantly improved by the introduction of an In2S3 interlayer, and long-lived charge carriers (t50% of 10 µs) are found.

9.
J Appl Crystallogr ; 56(Pt 4): 961-966, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555215

RESUMO

Understanding and control of thermal transport in solids at the nanoscale are crucial in engineering and enhance the properties of a new generation of optoelectronic, thermoelectric and photonic devices. In this regard, semiconductor superlattice structures provide a unique platform to study phenomena associated with phonon propagations in solids such as heat conduction. Transient X-ray diffraction can directly probe atomic motions and therefore is among the rare techniques sensitive to phonon dynamics in condensed matter. Here, optically induced transient heat conduction in GaAs/AlAs superlattice structures is studied using the EIGER2 detector. Benchmark experiments have been performed at the Austrian SAXS beamline at Elettra-Sincrotrone Trieste operated in the hybrid filling mode. This work demonstrates that drifts of experimental conditions, such as synchrotron beam fluctuations, become less essential when utilizing the EIGER2 double-gating mode which results in a faster acquisition of high-quality data and facilitates data analysis and data interpretation.

10.
Nanomedicine ; 53: 102697, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507061

RESUMO

PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , DNA , Polietilenoglicóis/química , RNA Interferente Pequeno
11.
Chemistry ; 29(57): e202301337, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37419861

RESUMO

Organic solar cells have been continuously studied and developed through the last decades. A major step in their development was the introduction of fused-ring non-fullerene electron acceptors. Yet, beside their high efficiency, they suffer from complex synthesis and stability issues. Perylene-based non-fullerene acceptors, in contrast, can be prepared in only a few steps and display good photochemical and thermal stability. Herein, we introduce four monomeric perylene diimide acceptors obtained in a three-step synthesis. In these molecules, the semimetals silicon and germanium were added in the bay position, on one or both sides of the molecules, resulting in asymmetric and symmetric compounds with a red-shifted absorption compared to unsubstituted perylene diimide. Introducing two germanium atoms improved the crystallinity and charge carrier mobility in the blend with the conjugated polymer PM6. In addition, charge carrier separation is significantly influenced by the high crystallinity of this blend, as shown by transient absorption spectroscopy. As a result, the solar cells reached a power conversion efficiency of 5.38 %, which is one of the highest efficiencies of monomeric perylene diimide-based solar cells recorded to date.

12.
J Appl Crystallogr ; 56(Pt 3): 801-809, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284273

RESUMO

In situ small-angle X-ray scattering (SAXS) was employed to identify critical parameters during thermal treatment for template removal of an ordered mesoporous carbon precursor synthesized via a direct soft-templating route. The structural parameters obtained from the SAXS data as a function of time were the lattice parameter of the 2D hexagonal structure, the diameter of the cylindrical mesostructures and a power-law exponent characterizing the interface roughness. Moreover, detailed information on contrast changes and pore lattice order was obtained from analysis of the integrated SAXS intensity of the Bragg and diffuse scattering separately. Five characteristic regions during heat treatment were identified and discussed regarding the underlying dominant processes. The influence of temperature and O2/N2 ratio on the final structure was analyzed, and parameter ranges were identified for an optimized template removal without strongly affecting the matrix. The results indicate that the final structure and controllability of the process are optimum for temperatures between 260 and 300°C with a gas flow containing 2 mol% of O2.

13.
RNA ; 29(10): 1520-1534, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37380360

RESUMO

Small noncoding RNAs are an important class of regulatory RNAs in bacteria, often regulating responses to changes in environmental conditions. OxyS is a 110 nt, stable, trans-encoded small RNA found in Escherichia coli and is induced by an increased concentration of hydrogen peroxide. OxyS has an important regulatory role in cell stress response, affecting the expression of multiple genes. In this work, we investigated the structure of OxyS and the interaction with fhlA mRNA using nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and unbiased molecular dynamics simulations. We determined the secondary structures of isolated stem-loops and confirmed their structural integrity in OxyS. Unexpectedly, stem-loop SL4 was identified in the region that was predicted to be unstructured. Three-dimensional models of OxyS demonstrate that OxyS adopts an extended structure with four solvent-exposed stem-loops, which are available for interaction with other RNAs and proteins. Furthermore, we provide evidence of base-pairing between OxyS and fhlA mRNA.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , RNA Bacteriano/metabolismo , Transativadores/genética
14.
J Synchrotron Radiat ; 30(Pt 4): 723-738, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37343017

RESUMO

The ability to utilize a hybrid-photon-counting detector to its full potential can significantly influence data quality, data collection speed, as well as development of elaborate data acquisition schemes. This paper facilitates the optimal use of EIGER2 detectors by providing theory and practical advice on (i) the relation between detector design, technical specifications and operating modes, (ii) the use of corrections and calibrations, and (iii) new acquisition features: a double-gating mode, 8-bit readout mode for increasing temporal resolution, and lines region-of-interest readout mode for frame rates up to 98 kHz. Examples of the implementation and application of EIGER2 at several synchrotron sources (ESRF, PETRA III/DESY, ELETTRA, AS/ANSTO) are presented: high accuracy of high-throughput data in serial crystallography using hard X-rays; suppressing higher harmonics of undulator radiation, improving peak shapes, increasing data collection speed in powder X-ray diffraction; faster ptychography scans; and cleaner and faster pump-and-probe experiments.


Assuntos
Fótons , Síncrotrons , Raios X , Radiografia , Difração de Raios X
15.
J Colloid Interface Sci ; 645: 448-457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37156153

RESUMO

HYPOTHESIS: Modification of polyallylamine hydrochloride (PAH) with heterobifunctional low molecular weight polyethylene glycol (PEG) (600 and 1395 Da), and subsequent attachment of mannose, glucose, or lactose sugars to PEG, can lead to formation of polyamine phosphate nanoparticles (PANs) with lectin binding affinity and narrow size distribution. EXPERIMENTS: Size, polydispersity, and internal structure of glycosylated PEGylated PANs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). Fluorescence correlation spectroscopy (FCS) was used to study the association of labelled glycol-PEGylated PANs. The number of polymer chains forming the nanoparticles was determined from the changes in amplitude of the cross-correlation function of the polymers after formation of the nanoparticles. SAXS and fluorescence cross-correlation spectroscopy were used to investigate the interaction of PANs with lectins: concanavalin A with mannose modified PANs, and jacalin with lactose modified ones. FINDINGS: Glyco-PEGylated PANs are highly monodispersed, with diameters of a few tens of nanometers and low charge, and a structure corresponding to spheres with Gaussian chains. FCS shows that the PANs are single chain nanoparticles or formed by two polymer chains. Concanavalin A and jacalin show specific interactions for the glyco-PEGylated PANs with higher affinity than bovine serum albumin.


Assuntos
Nanopartículas , Fosfatos , Concanavalina A , Lactose , Manose , Espalhamento a Baixo Ângulo , Raios X , Polietilenoglicóis/química , Difração de Raios X , Nanopartículas/química , Poliaminas , Lectinas/química , Polímeros , Análise Espectral
16.
ACS Nano ; 17(3): 2089-2100, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36719353

RESUMO

The success of the colloidal semiconductor quantum dots (QDs) field is rooted in the precise synthetic control of QD size, shape, and composition, enabling electronically well-defined functional nanomaterials that foster fundamental science and motivate diverse fields of applications. While the exploitation of the strong confinement regime has been driving commercial and scientific interest in InP or CdSe QDs, such a regime has still not been thoroughly explored and exploited for lead-halide perovskite QDs, mainly due to a so far insufficient chemical stability and size monodispersity of perovskite QDs smaller than about 7 nm. Here, we demonstrate chemically stable strongly confined 5 nm CsPbBr3 colloidal QDs via a postsynthetic treatment employing didodecyldimethylammonium bromide ligands. The achieved high size monodispersity (7.5% ± 2.0%) and shape-uniformity enables the self-assembly of QD superlattices with exceptional long-range order, uniform thickness, an unusual rhombic packing with an obtuse angle of 104°, and narrow-band cyan emission. The enhanced chemical stability indicates the promise of strongly confined perovskite QDs for solution-processed single-photon sources, with single QDs showcasing a high single-photon purity of 73% and minimal blinking (78% "on" fraction), both at room temperature.

17.
Chem Mater ; 35(24): 10416-10433, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162046

RESUMO

The demand for versatile and sustainable energy materials is on the rise, given the importance of developing novel clean technologies for transition to a net zero economy. Here, we present the synthesis, characterization, and application of lignin-derived ordered mesoporous carbons with various pore sizes (from 5 to approximately 50 nm) as anodes in sodium-ion batteries. We have varied the pore size using self-synthesized PEOn-b-PHAm block copolymers with different PEO and PHA chain lengths, applying the "soft templating" approach to introduce isolated spherical pores of 20 to 50 nm in diameters. The pore structure was evaluated by transmission electron microscopy (TEM), nitrogen physisorption, and small-angle X-ray scattering (SAXS). We report the microstructure analysis of such mesoporous lignin-based carbons using Raman spectroscopy and wide-angle X-ray scattering (WAXS). In comparison with nontemplated carbon and carbons templated employing commercial Pluronic F-127 and PIB50-b-PEO45, which created accessible channels and spherical pores up to approximately 10 nm in diameter, the carbon microstructure analysis revealed that templating with all applied polymers significantly impedes graphitization upon thermal treatment. Furthermore, the gained knowledge of similar carbon microstructures regardless of the type of template allowed the investigation of the influence of different pore morphologies in carbon applied as an anode material in sodium-ion batteries, supporting the previous theories in the literature that closed pores are beneficial for sodium storage while providing insights into the importance of pore size.

18.
ACS Appl Mater Interfaces ; 14(51): 56666-56677, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524967

RESUMO

Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.


Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Humanos , Vacinas contra COVID-19 , Células HEK293 , Lipídeos/química , Camundongos Endogâmicos C57BL , DNA/química , Nanopartículas/química , RNA Interferente Pequeno
19.
Chem Sci ; 13(40): 11869-11877, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320901

RESUMO

Fundamental knowledge on the intrinsic timescale of structural transformations in photo-switchable metal-organic framework films is crucial to tune their switching performance and to facilitate their applicability as stimuli-responsive materials. In this work, for the first time, an integrated approach to study and quantify the temporal evolution of structural transformations is demonstrated on an epitaxially oriented DMOF-1-on-MOF film system comprising azobenzene in the DMOF-1 pores (DMOF-1/AB). We employed time-resolved Grazing Incidence Wide-Angle X-Ray Scattering measurements to track the structural response of the DMOF-1/AB film upon altering the length of the azobenzene molecule by photo-isomerization (trans-to-cis, 343 nm; cis-to-trans, 450 nm). Within seconds, the DMOF-1/AB response occurred fully reversible and over several switching cycles by cooperative photo-switching of the oriented DMOF-1/AB crystallites as confirmed further by infrared measurements. Our work thereby suggests a new avenue to elucidate the timescales and photo-switching characteristics in structurally responsive MOF film systems.

20.
Colloids Surf B Biointerfaces ; 220: 112884, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209550

RESUMO

The design of drug delivery systems (DDS) for the encapsulation of therapeutic agents and the controlled release to the target site of the disease is one of the main goals of nanomedicine. Although already explored in an extensive number of studies over the years, lipid assemblies, and particularly liposomes, are still considered the most promising and interesting candidates as DDS due to their biocompatibility and structural similarity with plasma membranes. Lately, this research area has been extended to include more complex lipid assemblies, such as cubosomes. Cubosomes are an emerging structural platform for the delivery of molecules with pharmaceutical interest, such as drugs, bioactives and contrast agents. Here we report on the application of a thermo-responsive copolymer poly(N,N-dimethylacrylamide)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM), as a thermoresponsive stabilizer of lipid-based nanoparticles for drug-delivery. First, we assessed the affinity of PDMA-b-PNIPAM towards supported and free-standing bilayers; then, we explored the colloidal and thermoresponsive properties of cubic self-assembled DDS composed of glycerol-monooleate (GMO), where PDMA-b-PNIPAM replaces the conventional stabilizer Pluronic F127 (PEOx-PPOy-PEOx), normally used for cubosomes. We prepared dispersions of cubic lipid nanoparticles with two PDMA-b-PNIPAM block copolymers of different molar mass. The colloidal properties were then assessed and compared to those exhibited by standard lipid cubic dispersions stabilized by Pluronic F-127, combining a series of experimental techniques (Quartz Crystal Microbalance with Dissipation monitoring, Dynamic Light Scattering, Small-Angle X-rays Scattering, Cryo-Transmission Electron Microscopy). Interestingly, PDMA-b-PNIPAM stabilized cubosomes display additional benefits with respect to those stabilized by Pluronic, thanks to the combination of a "sponge " effect for the controlled release of encapsulated molecules and an increased affinity towards lipid bilayer membranes, which is a promising feature to maximize fusion with the target-cellular site.


Assuntos
Lipossomos , Nanopartículas , Preparações de Ação Retardada , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Polímeros , Poloxâmero/química , Excipientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...