Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trans R Soc Trop Med Hyg ; 114(8): 566-574, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333010

RESUMO

BACKGROUND: Manual white blood cell (WBC) differential counts as a predictor for neonatal sepsis development in a low-resource setting have not been thoroughly evaluated. We hypothesized that manual differentiation (specifically immature:total [I:T] neutrophil ratios) would be feasible and useful as an adjunct to predict early-onset neonatal sepsis (EONS). Secondarily, we hypothesized that vaccination with bacillus Calmette-Guérin (BCG) and oral polio vaccine (OPV) could alter WBC differential counts and thus might reduce its predictive performance. METHODS: We performed a prospective cohort study within a randomized trial, randomizing healthy, high-risk newborns admitted to the nursery at the national hospital in Guinea-Bissau 1:1 to BCG+OPV at admission or at discharge (usual practice). Thin capillary blood films were prepared at 2 d of age in a subset of 268 neonates. WBC counts were assessed by microscopy and neonates were followed up for sepsis development within 2 weeks. RESULTS: Ninety-eight percent (264/268) of smears provided interpretable reads. Of the 264 children, 136 had been randomized to receive BCG+OPV prior to sampling; the remaining 128 were vaccinated at discharge. The I:T ratio (average 0.017) was lower among children who did not develop clinical sepsis but did not predict sepsis (p=0.70). Only three children had an I:T ratio >0.2 (associated with a higher probability of clinical sepsis in previous studies) but did not develop sepsis. Immunization did not alter WBC composition. CONCLUSIONS: Manual WBC differentials are feasible in low-resource settings. WBC differentials are not affected by standard newborn immunization. However, the I:T ratio had no value in predicting subsequent development of sepsis.


Assuntos
Sepse Neonatal , Sepse , Criança , Estudos de Viabilidade , Guiné-Bissau , Humanos , Recém-Nascido , Contagem de Leucócitos , Sepse Neonatal/diagnóstico , Sepse Neonatal/epidemiologia , Sepse Neonatal/prevenção & controle , Estudos Prospectivos , Sepse/diagnóstico
2.
Front Immunol ; 9: 1918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190719

RESUMO

Bacterial sepsis is one of the leading causes of death in newborns. In the face of growing antibiotic resistance, it is crucial to understand the pathology behind the disease in order to develop effective interventions. Neonatal susceptibility to sepsis can no longer be attributed to simple immune immaturity in the face of mounting evidence that the neonatal immune system is tightly regulated and well controlled. The neonatal immune response is consistent with a "disease tolerance" defense strategy (minimizing harm from immunopathology) whereas adults tend toward a "disease resistance" strategy (minimizing harm from pathogens). One major advantage of disease tolerance is that is less energetically demanding than disease resistance, consistent with the energetic limitations of early life. Immune effector cells enacting disease resistance responses switch to aerobic glycolysis upon TLR stimulation and require steady glycolytic flux to maintain the inflammatory phenotype. Rapid and intense upregulation of glucose uptake by immune cells necessitates an increased reliance on fatty acid metabolism to (a) fuel vital tissue function and (b) produce immunoregulatory intermediates which help control the magnitude of inflammation. Increasing disease resistance requires more energy: while adults have fat and protein stores to catabolize, neonates must reallocate resources away from critical growth and development. This understanding of sepsis pathology helps to explain many of the differences between neonatal and adult immune responses. Taking into account the central role of metabolism in the host response to infection and the severe metabolic demands of early life, it emerges that the striking clinical susceptibility to bacterial infection of the newborn is at its core a problem of metabolism. The evidence supporting this novel hypothesis, which has profound implications for interventions, is presented in this review.


Assuntos
Resistência à Doença , Metabolismo Energético/imunologia , Tolerância Imunológica , Sepse Neonatal/imunologia , Humanos , Recém-Nascido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...