Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Med Surg (Lond) ; 86(1): 219-224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222678

RESUMO

Objectives: Campylobacters are a major cause of gastroenteritis worldwide. These are fastidious in culture and false negative results are seen in many clinical laboratories. Among molecular methods, the dot-blot technique is widely used for a variety of purposes, especially diagnostics. So, the authors aimed to detect C. jejuni and C. coli simultaneously using a dot-blot assay. Methods: After evaluating the bioinformatics studies, a cadF-conserved fragment was selected for the design of primers and probe. DNAs from standard strains and a recombinant plasmid, prepared in this study, were used to assess the technique. The specificity of the method was also surveyed using DNAs from other enteric bacteria. The limit of detection was evaluated by recombinant plasmid and different concentrations of the designed probe. Results: A 95-bp fragment of cadF was selected, and in silico analysis studies showed that it is conserved between both species. Also, the non-specific annealing of the primers and probe with other bacteria was not seen theoretically. The technique with recombinant plasmid as well as DNAs of standard strains created black spots on the membrane, confirming that the probe was correctly synthesized. No non-specific reactions with other bacterial species were observed (specificity=100%). The limit of detection of the test was determined to be 50 µg/ml. Conclusions: This is the first study to simultaneously detect two important pathogens in the Campylobacter genus and was able to detect C. jejuni and C. coli with acceptable sensitivity and specificity.

2.
Cancer Cell Int ; 23(1): 98, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210528

RESUMO

Glioblastoma (GBM) is an aggressive type of cancer that originates in the cells called astrocytes, which support the functioning of nerve cells. It can develop in either the brain or the spinal cord and is also known as glioblastoma multiform. GBM is a highly aggressive cancer that can occur in either the brain or spinal cord. The detection of GBM in biofluids offers potential advantages over current methods for diagnosing and treatment monitoring of glial tumors. Biofluid-based detection of GBM focuses on identifying tumor-specific biomarkers in blood and cerebrospinal fluid. To date, different methods have been used to detect biomarkers of GBM, ranging from various imaging techniques to molecular approaches. Each method has its own strengths and weaknesses. The present review aims to scrutinize multiple diagnostic methods for GBM, with a focus on proteomics methods and biosensors. In other words, this study aims to provide an overview of the most significant research findings based on proteomics and biosensors for the diagnosis of GBM.

3.
J Drug Deliv Sci Technol ; 67: 102967, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34777586

RESUMO

The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.

4.
Iran J Pharm Res ; 18(4): 2101-2110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32184873

RESUMO

Biological synthesis of nanoparticles (NPs) has gained extensive attention during recent years by using various biological resources such as plant extracts and microorganisms as reducing and stabilizing agents. The objective of the present study was to biosynthesize zirconium NPs using Penicillium species as a reliable and eco-friendly protocol for the first time. The synthesized NPs were characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The results showed that three Penicillium species were able to synthesize zirconium NPs extracellularly with spherical morphology below 100 nm. Moreover, the preliminary antibacterial activity of zirconium NPs represented considerable antibacterial potential against Gram-negative bacteria. Overall, the current study demonstrated a novel bio-based approach for preparation of zirconium NPs. Further studies are required to expend this laboratory-based investigation to an industrial scale owing to their superiorities over traditional physicochemical methods such as cost-effectiveness and eco-friendliness.

5.
Iran J Pharm Res ; 17(4): 1509-1522, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568708

RESUMO

Lentinus edodes (L. edodes) is one of the most widely used traditional Chinese medicines and a high producer of various bioactive compounds such as polysaccharides. It has been shown that L. edodes polysaccharides (LEPLS) have several physiological effects with potential medical applications. In addition, the ability of L. edodes to grow and produce bioactive compounds on industrial by-products makes it an excellent candidate for the lage-scale production of such compounds. The objective of this study was to optimize mycelium and polysaccharide production by L. edodes on walnut shell through a two-step procedure including a one-factor-at-a-time approach to select the most important factors and a response surface methodology design to determine their optimum combinations. Several factors were evaluated in the first step and among them inoculum size, incubation time, and C/N ratio were selected for optimization of using RSM. The RSM model estimated that a maximal yield of biomass and LEPLS (0.043 mg/g and 46.80 mg/g respectively) could be obtained when inoculum size, incubation time, and C/N ratio were set at 23.41, 30, 10 units, respectively. These values were also verified by validation experiments.

6.
World J Microbiol Biotechnol ; 28(7): 2513-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22806157

RESUMO

Helicobacter pylori is a Gram-negative spiral bacterium that colonizes human gastric mucosa causing infection. In this study aiming at inhibition of H. pylori infection we made an attempt to evaluate immunogenicity of the total (UreC) and C-terminal (UreCc) fragments of H. pylori urease. Total UreC and its C-terminal fragment were expressed in E. coli. Recombinant proteins were analyzed by SDS-PAGE and western blot and then purified by Ni-NTA affinity chromatography. Female C57BL6/j mice were immunized with the purified proteins (UreC and UreCc). Antibody titers from isolated sera were measured by ELISA. Immunized mice were then challenged by oral gavage with live H. pylori Sydney strain SS1. Total of 109 CFU were inoculated into stomach of immunized and unimmunized healthy mice three times each at one day interval. Eight weeks after the last inoculation, the blood sample was collected and the serum antibody titer was estimated by ELISA. Stomach tissues from control and experimental animal groups were studied histopathologically. UreC and UreCc yielded recombinant proteins of 61 and 31 kDa respectively. ELIZA confirmed establishment of immunity and the antibodies produced thereby efficiently recognized H. pylori and inhibited its colonization in vivo. Pathological analysis did not reveal established infection in immunized mice challenged with H. pylori. The results support the idea that UreC and UreCc specific antibodies contribute to protection against H. pylori infections.


Assuntos
Proteínas de Bactérias/imunologia , Gastrite/microbiologia , Gastrite/prevenção & controle , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/uso terapêutico , Feminino , Infecções por Helicobacter/imunologia , Helicobacter pylori/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...