Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci (Camb) ; 7: 504-520, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017594

RESUMO

In response to COVID-19, the international water community rapidly developed methods to quantify the SARS-CoV-2 genetic signal in untreated wastewater. Wastewater surveillance using such methods has the potential to complement clinical testing in assessing community health. This interlaboratory assessment evaluated the reproducibility and sensitivity of 36 standard operating procedures (SOPs), divided into eight method groups based on sample concentration approach and whether solids were removed. Two raw wastewater samples were collected in August 2020, amended with a matrix spike (betacoronavirus OC43), and distributed to 32 laboratories across the U.S. Replicate samples analyzed in accordance with the project's quality assurance plan showed high reproducibility across the 36 SOPs: 80% of the recovery-corrected results fell within a band of ±1.15 log10 genome copies per L with higher reproducibility observed within a single SOP (standard deviation of 0.13 log10). The inclusion of a solids removal step and the selection of a concentration method did not show a clear, systematic impact on the recovery-corrected results. Other methodological variations (e.g., pasteurization, primer set selection, and use of RT-qPCR or RT-dPCR platforms) generally resulted in small differences compared to other sources of variability. These findings suggest that a variety of methods are capable of producing reproducible results, though the same SOP or laboratory should be selected to track SARS-CoV-2 trends at a given facility. The methods showed a 7 log10 range of recovery efficiency and limit of detection highlighting the importance of recovery correction and the need to consider method sensitivity when selecting methods for wastewater surveillance.

2.
Front Bioeng Biotechnol ; 9: 613626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912543

RESUMO

Co-digestion of fats, oils, and grease (FOG) with food waste (FW) can improve the energy recovery in anaerobic membrane bioreactors (AnMBRs). Here, we investigated the effect of co-digestion of FW and FOG in AnMBRs at fat mass loading of 0.5, 0.75, and 1.0 kg m-3 day-1 with a constant organic loading rate of 5.0 gCOD L-1 day-1 in both a single-phase (SP) and two-phase (TP) configuration. A separate mono-digestion of FW at an identical organic loading rate was used as the benchmark. During co-digestion, higher daily biogas production, ranging from 4.0 to 12.0%, was observed in the two-phase methane phase (TP-MP) reactor compared to the SP reactor, but the difference was statistically insignificant (p > 0.05) due to the high variability in daily biogas production. However, the co-digestion of FW with FOG at 1.0 kg m-3 day-1 fat loading rate significantly (p < 0.05) improved daily biogas production in both the SP (11.0%) and TP (13.0%) reactors compared to the mono-digestion of FW. Microbial community analyses using cDNA-based MinION sequencing of weekly biomass samples from the AnMBRs revealed the prevalence of Lactobacillus (92.2-95.7% relative activity) and Anaerolineaceae (13.3-57.5% relative activity), which are known as fermenters and fatty acid degraders. Syntrophic fatty acid oxidizers were mostly present in the SP and TP-MP reactors, possibly because of the low pH and short solid retention time (SRT) in the acid phase digesters. A greater abundance of the mcrA gene copies (and methanogens) was observed in the SP and MP reactors compared to the acid-phase (AP) reactors. This study demonstrates that FW and FOG can be effectively co-digested in AnMBRs and is expected to inform full-scale decisions on the optimum fat loading rate.

3.
Environ Sci Technol ; 53(16): 9572-9583, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31356076

RESUMO

Anaerobic membrane bioreactors (AnMBRs) are in use at the full-scale for energy recovery from food waste (FW). In this study, the potential for two-phase (acid/gas) AnMBR treatment of FW was investigated as a strategy to increase microbial diversity, thereby improving performance. Two bench-scale AnMBRs were operated in single-phase (SP) and two-phase (TP) mode across incremental increases in organic loading rate (OLR) from 2.5 to 15 g total chemical oxygen demand (COD) L·d-1. The TP acid-phase (TP-AP) enriched total VFAs by 3-fold compared to influent FW and harbored a distinct microbial community enriched in fermenters that thrived in the low pH environment. The TP methane phase (TP-MP) showed increased methane production and resilience relative to SP as OLR increased from 3.5 to 10 g COD L·d-1. SP showed signs of inhibition (i.e., rapid decrease in methane production per OLR) at 10 g COD L·d-1, whereas both systems were inhibited at 15 g COD L·d-1. At 10 g COD L·d-1, where the highest difference in performance was observed (20.3% increase in methane production), activity of syntrophic bacteria in TP-MP was double that of SP. Our results indicate that AnMBRs in TP mode could effectively treat FW at OLRs up to 10 g COD·L day-1 by improving hydrolysis rates, microbial diversity, and syntroph activity, and enriching resistant communities to high OLRs relative to AnMBRs in SP mode.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos
4.
Bioresour Technol ; 247: 999-1014, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28918349

RESUMO

Inhibition of anaerobic digestion (AD) due to perturbation caused by substrate composition and/or operating conditions can significantly reduce performance. Such perturbations could be limited by elucidating microbial community response to inhibitors and devising strategies to increase community resilience. To this end, advanced molecular methods are increasingly being applied to study the AD microbiome, a diverse community of microbial populations with complex interactions. This literature review of AD inhibition studies indicates that inhibitory concentrations are highly variable, likely stemming from differences in community structure or activity profile and previous exposure to inhibitors. More recent molecular methods such as 'omics' tools, substrate mapping, and real-time sequencing are helping to unravel the complexity of AD inhibition by elucidating physiological and ecological significance of key microbial populations. The AD community must strive towards developing predictive abilities to avoid system failure (e.g., real-time tracking of an indicator species) to improve resilience of AD systems.


Assuntos
Anaerobiose , Reatores Biológicos , Microbiota
5.
Water Res ; 123: 277-289, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28672212

RESUMO

Despite growing interest in co-digestion and demonstrated process improvements (e.g., enhanced stability and biogas production), few studies have evaluated how co-digestion impacts the anaerobic digestion (AD) microbiome. Three sequential bench-scale respirometry experiments were conducted at thermophilic temperature (50 °C) with various combinations of primary sludge (PS); thickened waste activated sludge (TWAS); fats, oils, and grease (FOG); and food waste (FW). Two additional runs were then performed to evaluate microbial inhibition at higher organic fractions of FOG (30-60% volatile solids loading (VSL; v/v)). Co-digestion of PS, TWAS, FOG, and FW resulted in a 26% increase in methane production relative to digestion of PS and TWAS. A substantial lag time was observed in biogas production for vessels with FOG addition that decreased by more than half in later runs, likely due to adaptation of the microbial community. 30% FOG with 10% FW showed the highest increase in methane production, increasing 53% compared to digestion of PS and TWAS. FOG addition above 50% VSL was found to be inhibitory with and without FW addition and resulted in volatile fatty acid (VFA) accumulation. Methane production was linked with high relative activity and abundance of syntrophic fatty-acid oxidizers alongside hydrogenotrophic methanogens, signaling the importance of interspecies interactions in AD. Specifically, relative activity of Syntrophomonas was significantly correlated with methane production. Further, methane production increased over subsequent runs along with methyl coenzyme M reductase (mcrA) gene expression, a functional gene in methanogens, suggesting temporal adaptation of the microbial community to co-digestion substrate mixtures. The study demonstrated the benefits of co-digestion in terms of performance enhancement and enrichment of key active microbial populations.


Assuntos
Anaerobiose , Reatores Biológicos , Bactérias , Gorduras , Alimentos , Metano , Esgotos
6.
Environ Sci Technol ; 51(5): 3048-3056, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28139909

RESUMO

With accumulating evidence of pulmonary infection via aerosolized nontuberculous mycobacteria (NTM), it is important to characterize their persistence in wastewater treatment, especially in arid regions where treated municipal wastewater is extensively reused. To achieve this goal, microbial diversity of the genus Mycobacterium was screened for clinically and environmentally relevant species using pyrosequencing. Analysis of the postdisinfected treated wastewater showed the presence of clinically relevant slow growers like M. kansasii, M. szulgai, M. gordonae, and M. asiaticum; however, in these samples, rapid growers like M. mageritense occurred at much higher relative abundance. M. asiaticum and M. mageritense have been isolated in pulmonary samples from NTM-infected patients in the region. Diversity analysis along the treatment train found environmentally relevant organisms like M. poriferae and M. insubricum to increase in relative abundance across the chlorine disinfection step. A comparison to qPCR results across the chlorine disinfection step saw no significant change in slow grower counts at CT disinfection values ≤90 mg·min/L; only an increase to 180 mg·min/L in late May brought slow growers to below detection levels. The study confirms the occurrence of clinically and environmentally relevant mycobacteria in treated municipal wastewater, suggesting the need for vigilant monitoring of treated wastewater quality and disinfection effectiveness prior to reuse.


Assuntos
Micobactérias não Tuberculosas/isolamento & purificação , Águas Residuárias , Desinfecção , Humanos , Mycobacterium/isolamento & purificação , Infecções por Mycobacterium não Tuberculosas/epidemiologia
7.
Water Sci Technol ; 71(8): 1203-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909731

RESUMO

Developing reliable quantitative microbial risk assessment (QMRA) procedures aids in setting recommendations on reuse applications of treated wastewater. In this study, a probabilistic QMRA to determine the risk of Salmonella infections resulting from the consumption of edible crops irrigated with treated wastewater was conducted. Quantitative polymerase chain reaction (qPCR) was used to enumerate Salmonella spp. in post-disinfected samples, where they showed concentrations ranging from 90 to 1,600 cells/100 mL. The results were used to construct probabilistic exposure models for the raw consumption of three vegetables (lettuce, cabbage, and cucumber) irrigated with treated wastewater, and to estimate the disease burden using Monte Carlo analysis. The results showed elevated median disease burden, when compared with acceptable disease burden set by the World Health Organization, which is 10⁻6 disability-adjusted life years per person per year. Of the three vegetables considered, lettuce showed the highest risk of infection in all scenarios considered, while cucumber showed the lowest risk. The results of the Salmonella concentration obtained with qPCR were compared with the results of Escherichia coli concentration for samples taken on the same sampling dates.


Assuntos
Irrigação Agrícola , Salmonella/classificação , Águas Residuárias/microbiologia , Humanos , Modelos Biológicos , Modelos Teóricos , Método de Monte Carlo , Reciclagem , Risco , Medição de Risco , Infecções por Salmonella/microbiologia , Infecções por Salmonella/transmissão , Eliminação de Resíduos Líquidos
8.
Environ Sci Technol ; 48(19): 11610-9, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25181426

RESUMO

Effective and sensitive monitoring of human pathogenic bacteria in municipal wastewater treatment is important not only for managing public health risk related to treated wastewater reuse, but also for ensuring proper functioning of the treatment plant. In this study, three different 16S rRNA gene molecular analysis methodologies were employed to screen bacterial pathogens in samples collected at three different stages of an activated sludge plant. Overall bacterial diversity was analyzed using next generation sequencing (NGS) on the Illumina MiSeq platform, as well as PCR-DGGE followed by band sequencing. In addition, a microdiversity analysis was conducted using PCR-DGGE, targeting Escherichia coli. Bioinformatics analysis was performed using QIIME protocol by clustering sequences against the Human Pathogenic Bacteria Database. NGS data were also clustered against the Greengenes database for a genera-level diversity analysis. NGS proved to be the most effective approach screening the sequences of 21 potential human bacterial pathogens, while the E. coli microdiversity analysis yielded one (O157:H7 str. EDL933) out of the two E. coli strains picked up by NGS. Overall diversity using PCR-DGGE did not yield any pathogenic sequence matches even though a number of sequences matched the NGS results. Overall, sequences of Gram-negative pathogens decreased in relative abundance along the treatment train while those of Gram-positive pathogens increased.


Assuntos
Bactérias/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Purificação da Água/métodos , Bactérias/genética , Cidades , Biologia Computacional/métodos , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Esgotos/microbiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...