Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 723: 138088, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32392692

RESUMO

Monomethylmercury (MMHg) concentrations in aquatic biota from Lake Titicaca are elevated although the mercury (Hg) contamination level of the lake is low. The contribution of sediments to the lake MMHg pool remained however unclear. In this work, seven cores representative of the contrasted sediments and aquatic ecotopes of Lake Titicaca were sliced and analyzed for Hg and redox-sensitive elements (Mn, Fe, N and S) speciation in pore-water (PW) and sediment to document early diagenetic processes responsible for MMHg production and accumulation in PW during organic matter (OM) oxidation. The highest MMHg concentrations (up to 12.2 ng L-1 and 90% of THg) were found in subsurface PWs of the carbonate-rich sediments which cover 75% of the small basin and 20% of the large one. In other sediment facies, the larger content of OM restricted MMHg production and accumulation in PW by sequestering Hg in the solid phase and potentially also by decreasing its bioavailability in the PW. Diagenetically reduced S and Fe played a dual role either favoring or restricting the availability of Hg for biomethylation. The calculation of theoretical diffusive fluxes suggests that Lake Titicaca bottom sediments are a net source of MMHg, accounting for more than one third of the daily MMHg accumulated in the water column of the Lago Menor. We suggest that in the context of rising anthropogenic pressure, the enhancement of eutrophication in high altitude Altiplano lakes may increase these MMHg effluxes into the water column and favor its accumulation in water and biota.

2.
Mar Pollut Bull ; 152: 110870, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31957671

RESUMO

Eutrophication is a major threat to world's coral reefs. Here, we mapped the distribution of the anthropogenic nitrogen footprint around Nouméa, a coastal city surrounded by 15,743 km2 of UNESCO listed reefs. We measured the δ15N signature of 348 long-lived benthic bivalves from 12 species at 27 sites and interpolated these to generate a δ15N isoscape. We evaluated the influence of water residence times on nitrogen enrichment and predicted an eutrophication risk at the UNESCO core area. Nitrogen isoscapes revealed a strong spatial gradient (4.3 to 11.7‰) from the outer lagoon to three highly exposed bays of Nouméa. Several protected reefs would benefit from an improved management of wastewater outputs, while one bay in the UNESCO core area may suffer a high eutrophication risk in the future. Our study reinforces the usefulness of using benthic animals to characterize the anthropogenic N-footprint and provide a necessary baseline for both ecologists and policy makers.


Assuntos
Antozoários , Bivalves , Animais , Baías , Recifes de Corais , Eutrofização , Nitrogênio
3.
Environ Pollut ; 231(Pt 1): 262-270, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28806691

RESUMO

Aquatic ecosystems of the Bolivian Altiplano (∼3800 m a.s.l.) are characterized by extreme hydro-climatic constrains (e.g., high UV-radiations and low oxygen) and are under the pressure of increasing anthropogenic activities, unregulated mining, agricultural and urban development. We report here a complete inventory of mercury (Hg) levels and speciation in the water column, atmosphere, sediment and key sentinel organisms (i.e., plankton, fish and birds) of two endorheic Lakes of the same watershed differing with respect to their size, eutrophication and contamination levels. Total Hg (THg) and monomethylmercury (MMHg) concentrations in filtered water and sediment of Lake Titicaca are in the lowest range of reported levels in other large lakes worldwide. Downstream, Hg levels are 3-10 times higher in the shallow eutrophic Lake Uru-Uru than in Lake Titicaca due to high Hg inputs from the surrounding mining region. High percentages of MMHg were found in the filtered and unfiltered water rising up from <1 to ∼50% THg from the oligo/hetero-trophic Lake Titicaca to the eutrophic Lake Uru-Uru. Such high %MMHg is explained by a high in situ MMHg production in relation to the sulfate rich substrate, the low oxygen levels of the water column, and the stabilization of MMHg due to abundant ligands present in these alkaline waters. Differences in MMHg concentrations in water and sediments compartments between Lake Titicaca and Uru-Uru were found to mirror the offset in MMHg levels that also exist in their respective food webs. This suggests that in situ MMHg baseline production is likely the main factor controlling MMHg levels in fish species consumed by the local population. Finally, the increase of anthropogenic pressure in Lake Titicaca may probably enhance eutrophication processes which favor MMHg production and thus accumulation in water and biota.


Assuntos
Monitoramento Ambiental , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Bolívia , Ecossistema , Eutrofização , Peixes , Cadeia Alimentar , Mineração , Plâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...