Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398599

RESUMO

Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity.


Assuntos
Proteínas do Citoesqueleto , NAD , Humanos , Cromatografia Líquida de Alta Pressão , Proteínas do Domínio Armadillo
2.
Food Chem ; 427: 136684, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37418807

RESUMO

Manuka honey, which is rich in pinocembrin, quercetin, naringenin, salicylic, p-coumaric, ferulic, syringic and 3,4-dihydroxybenzoic acids, has been shown to have pleiotropic effects against colon cancer cells. In this study, potential chemosensitizing effects of Manuka honey against 5-Fluorouracil were investigated in colonspheres enriched with cancer stem cells (CSCs), which are responsible for chemoresistance. Results showed that 5-Fluorouracil increased when it was combined with Manuka honey by downregulating the gene expression of both ATP-binding cassette sub-family G member 2, an efflux pump and thymidylate synthase, the main target of 5-Fluorouracil which regulates the ex novo DNA synthesis. Manuka honey was associated with decreased self-renewal ability by CSCs, regulating expression of several genes in Wnt/ß-catenin, Hedgehog and Notch pathways. This preliminary study opens new areas of research into the effects of natural compounds in combination with pharmaceuticals and, potentially, increase efficacy or reduce adverse effects.


Assuntos
Neoplasias do Colo , Mel , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Mel/análise , Células-Tronco Neoplásicas/metabolismo , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Fenóis/metabolismo
3.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050002

RESUMO

Five heterocyclic derivatives were synthesized by functionalization of a flavone nucleus with an aminophenoxy moiety. Their cytotoxicity was investigated in vitro in two models of human non-small cell lung cancer (NSCLC) cells (A549 and NCI-H1975) by using MTT assay and the results compared to those obtained in healthy fibroblasts as a non-malignant cell model. One of the aminophenoxy flavone derivatives (APF-1) was found to be effective at low micromolar concentrations in both lung cancer cell lines with a higher selective index (SI). Flow cytometric analyses showed that APF-1 induced apoptosis and cell cycle arrest in the G2/M phase through the up-regulation of p21 expression. Therefore, the aminophenoxy flavone-based compounds may be promising cancer-selective agents and could serve as a base for further research into the design of flavone-based anticancer drugs.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Flavonas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonas/farmacologia , Flavonas/uso terapêutico , Apoptose , Proliferação de Células , Células A549
4.
Front Mol Biosci ; 9: 834700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463964

RESUMO

Human α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) stands at a branch point of the de novo NAD+ synthesis pathway and plays an important role in maintaining NAD+ homeostasis. It has been recently identified as a novel therapeutic target for a wide range of diseases, including inflammatory, metabolic disorders, and aging. So far, in absence of potent and selective enzyme inhibitors, only a crystal structure of the complex of human dimeric ACMSD with pseudo-substrate dipicolinic acid has been resolved. In this study, we report the crystal structure of the complex of human dimeric ACMSD with TES-1025, the first nanomolar inhibitor of this target, which shows a binding conformation different from the previously published predicted binding mode obtained by docking experiments. The inhibitor has a K i value of 0.85 ± 0.22 nM and binds in the catalytic site, interacting with the Zn2+ metal ion and with residues belonging to both chains of the dimer. The results provide new structural information about the mechanism of inhibition exerted by a novel class of compounds on the ACMSD enzyme, a novel therapeutic target for liver and kidney diseases.

5.
iScience ; 25(2): 103812, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198877

RESUMO

SARM1 is an NAD(P) glycohydrolase and TLR adapter with an essential, prodegenerative role in programmed axon death (Wallerian degeneration). Like other NAD(P)ases, it catalyzes multiple reactions that need to be fully investigated. Here, we compare these multiple activities for recombinant human SARM1, human CD38, and Aplysia californica ADP ribosyl cyclase. SARM1 has the highest transglycosidation (base exchange) activity at neutral pH and with some bases this dominates NAD(P) hydrolysis and cyclization. All SARM1 activities, including base exchange at neutral pH, are activated by an increased NMN:NAD ratio, at physiological levels of both metabolites. SARM1 base exchange occurs also in DRG neurons and is thus a very likely physiological source of calcium-mobilizing agent NaADP. Finally, we identify regulation by free pyridines, NADP, and nicotinic acid riboside (NaR) on SARM1, all of therapeutic interest. Understanding which specific SARM1 function(s) is responsible for axon degeneration is essential for its targeting in disease.

6.
J Biol Chem ; 298(3): 101669, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120922

RESUMO

The secreted form of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes a key reaction in intracellular NAD biosynthesis, acts as a damage-associated molecular pattern triggering Toll-like receptor 4 (TLR4)-mediated inflammatory responses. However, the precise mechanism of interaction is unclear. Using an integrated approach combining bioinformatics and functional and structural analyses, we investigated the interaction between NAMPT and TLR4 at the molecular level. Starting from previous evidence that the bacterial ortholog of NAMPT cannot elicit the inflammatory response, despite a high degree of structural conservation, two positively charged areas unique to the human enzyme (the α1-α2 and ß1-ß2 loops) were identified as likely candidates for TLR4 binding. However, alanine substitution of the positively charged residues within these loops did not affect either the oligomeric state or the catalytic efficiency of the enzyme. The kinetics of the binding of wildtype and mutated NAMPT to biosensor-tethered TLR4 was analyzed. We found that mutations in the α1-α2 loop strongly decreased the association rate, increasing the KD value from 18 nM, as determined for the wildtype, to 1.3 µM. In addition, mutations in the ß1-ß2 loop or its deletion increased the dissociation rate, yielding KD values of 0.63 and 0.22 µM, respectively. Mutations also impaired the ability of NAMPT to trigger the NF-κB inflammatory signaling pathway in human cultured macrophages. Finally, the involvement of the two loops in receptor binding was supported by NAMPT-TLR4 docking simulations. This study paves the way for future development of compounds that selectively target eNAMPT/TLR4 signaling in inflammatory disorders.


Assuntos
Citocinas , Nicotinamida Fosforribosiltransferase , Receptor 4 Toll-Like , Citocinas/genética , Citocinas/metabolismo , Humanos , NAD/metabolismo , NF-kappa B/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Ligação Proteica , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
Elife ; 102021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34870595

RESUMO

Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.


Assuntos
Proteínas do Domínio Armadillo/genética , Axônios/patologia , Proteínas do Citoesqueleto/genética , Degeneração Neural/fisiopatologia , Neurotoxinas/farmacologia , Compostos de Fenilureia/farmacologia , Animais , Proteínas do Domínio Armadillo/metabolismo , Axônios/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Feminino , Masculino , Camundongos , Degeneração Neural/induzido quimicamente , Rodenticidas/farmacologia
8.
Antioxidants (Basel) ; 10(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34439472

RESUMO

Synthetic nitrone spin-traps are being explored as therapeutic agents for the treatment of a wide range of oxidative stress-related pathologies, including but not limited to stroke, cancer, cardiovascular, and neurodegenerative diseases. In this context, increasing efforts are currently being made to the design and synthesis of new nitrone-based compounds with enhanced efficacy. The most researched nitrones are surely the ones related to α-phenyl-tert-butylnitrone (PBN) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) derivatives, which have shown to possess potent biological activity in many experimental animal models. However, more recently, nitrones with a benzoxazinic structure (3-aryl-2H-benzo[1,4]oxazin-N-oxides) have been demonstrated to have superior antioxidant activity compared to PBN. In this study, two new benzoxazinic nitrones bearing an electron-withdrawing methoxycarbonyl group on the benzo moiety (in para and meta positions respect to the nitronyl function) were synthesized. Their in vitro antioxidant activity was evaluated by two cellular-based assays (inhibition of AAPH-induced human erythrocyte hemolysis and cell death in human retinal pigmented epithelium (ARPE-19) cells) and a chemical approach by means of the α,α-diphenyl-ß-picrylhydrazyl (DPPH) scavenging assay, using both electron paramagnetic resonance (EPR) spectroscopy and UV spectrophotometry. A computational approach was also used to investigate their potential primary mechanism of antioxidant action, as well as to rationalize the effect of functionalization on the nitrones reactivity toward DPPH, chosen as model radical in this study. Further insights were also gathered by exploring the nitrone electrochemical properties via cyclic voltammetry and by studying their kinetic behavior by means of EPR spectroscopy. Results showed that the introduction of an electron-withdrawing group in the phenyl moiety in the para position significantly increased the antioxidant capacity of benzoxazinic nitrones both in cell and cell-free systems. From the mechanistic point of view, the calculated results closely matched the experimental findings, strongly suggesting that the H-atom transfer (HAT) is likely to be the primary mechanism in the DPPH quenching.

9.
Food Chem Toxicol ; 156: 112484, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34389368

RESUMO

Colorectal cancer remains a challenging health burden worldwide. This study aimed to assess the potentiality of Strawberry tree honey (STH), a polyphenol-enriched food, to increase the effectiveness of 5-Fluorouracil (5-FU) in adenocarcinoma (HCT-116) and metastatic (LoVo) colon cancer cell lines. The combined treatment reduced cell viability and caused oxidative stress, by increasing oxidative biomarkers and decreasing antioxidant defence, in a more potent way compared to 5-FU alone. The expression of endoplasmic reticulum (ATF-6, XBP-1) and MAPK (p-p38 MAPK, p-ERK1/2) markers were also elevated after the combined treatment, enhancing the cell cycle arrest through the modulation of regulatory genes (i.e., cyclins and CDKs). Apoptotic gene (i.e., caspases) expressions were also increased after the combined treatment, while those of proliferation (i.e., EGFR), cell migration, invasion (i.e., matrix metallopeptidase) and epithelial-mesenchymal transition (N-cadherin, ß-catenin) were suppressed. Finally, the combined treatment led cell metabolism towards a quiescent stage, by reducing mitochondrial respiration and glycolysis. In conclusion, this work represents an initial step to highlight the possibility to use STH in combination with 5-FU in the treatment of colon cancer, even if further in vitro an in vivo studies are strongly needed to confirm the possible chemo-sensitizing effects of STH.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Fragaria/química , Mel/análise , Antimetabólitos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fluoruracila/administração & dosagem , Células HCT116 , Humanos , Estresse Oxidativo/efeitos dos fármacos
10.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199271

RESUMO

Nicotinamide mononucleotide (NMN) is a key intermediate in the nicotinamide adenine dinucleotide (NAD+) biosynthesis. Its supplementation has demonstrated beneficial effects on several diseases. The aim of this study was to characterize NMN deamidase (PncC) inactive mutants to use as possible molecular recognition elements (MREs) for an NMN-specific biosensor. Thermal stability assays and steady-state fluorescence spectroscopy measurements were used to study the binding of NMN and related metabolites (NaMN, Na, Nam, NR, NAD, NADP, and NaAD) to the PncC mutated variants. In particular, the S29A PncC and K61Q PncC variant forms were selected since they still preserve the ability to bind NMN in the micromolar range, but they are not able to catalyze the enzymatic reaction. While S29A PncC shows a similar affinity also for NaMN (the product of the PncC catalyzed reaction), K61Q PncC does not interact significantly with it. Thus, PncC K61Q mutant seems to be a promising candidate to use as specific probe for an NMN biosensor.


Assuntos
Amidoidrolases/genética , Técnicas Biossensoriais , Mutação/genética , Mononucleotídeo de Nicotinamida/metabolismo , Estabilidade Enzimática , Cinética , Mononucleotídeo de Nicotinamida/química , Multimerização Proteica , Espectrometria de Fluorescência , Temperatura , Triptofano/metabolismo
11.
Food Chem ; 325: 126881, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32387951

RESUMO

Chemoresistance and development of relapses are ascribable to a rare cell population of tumour mass: cancer stem cells (CSCs). Targeting CSCs could increase patients' survival rate and it is important to identify molecules that can act on the main pathways of these cells. Natural bioactive compounds, of which Manuka honey (MH) is rich, could be a good opportunity to target them. This work aims to evaluate the effect of MH on CSCs-like from human colorectal carcinoma (HCT-116 cell line) enriched through the in vitro sphere-forming assay. The results showed that MH reduced the volume of the entire culture of spheroids, affecting also their morphological parameters and induced apoptosis and ROS intracellular accumulation in CSCs-like. In addition, MH decreased the mRNA expression of one of ABC transporters (ABCG2) and affected self-renewal ability through the downregulation of the mRNA expression of one of the receptor membranes of Wnt/ß-catenin pathway (Frizzled 7).

12.
J Bacteriol ; 202(10)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32152217

RESUMO

Diadenosine tetraphosphate (Ap4A) is a dinucleotide found in both prokaryotes and eukaryotes. In bacteria, its cellular levels increase following exposure to various stress signals and stimuli, and its accumulation is generally correlated with increased sensitivity to a stressor(s), decreased pathogenicity, and enhanced antibiotic susceptibility. Ap4A is produced as a by-product of tRNA aminoacylation, and is cleaved to ADP molecules by hydrolases of the ApaH and Nudix families and/or by specific phosphorylases. Here, considering evidence that the recombinant protein YqeK from Staphylococcus aureus copurified with ADP, and aided by thermal shift and kinetic analyses, we identified the YqeK family of proteins (COG1713) as an unprecedented class of symmetrically cleaving Ap4A hydrolases. We validated the functional assignment by confirming the ability of YqeK to affect in vivo levels of Ap4A in B. subtilis YqeK shows a catalytic efficiency toward Ap4A similar to that of the symmetrically cleaving Ap4A hydrolases of the known ApaH family, although it displays a distinct fold that is typical of proteins of the HD domain superfamily harboring a diiron cluster. Analysis of the available 3D structures of three members of the YqeK family provided hints to the mode of substrate binding. Phylogenetic analysis revealed the occurrence of YqeK proteins in a consistent group of Gram-positive bacteria that lack ApaH enzymes. Comparative genomics highlighted that yqeK and apaH genes share a similar genomic context, where they are frequently found in operons involved in integrated responses to stress signals.IMPORTANCE Elevation of Ap4A level in bacteria is associated with increased sensitivity to heat and oxidative stress, reduced antibiotic tolerance, and decreased pathogenicity. ApaH is the major Ap4A hydrolase in gamma- and betaproteobacteria and has been recently proposed as a novel target to weaken the bacterial resistance to antibiotics. Here, we identified the orphan YqeK protein family (COG1713) as a highly efficient Ap4A hydrolase family, with members distributed in a consistent group of bacterial species that lack the ApaH enzyme. Among them are the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Mycoplasma pneumoniae By identifying the player contributing to Ap4A homeostasis in these bacteria, we disclose a novel target to develop innovative antibacterial strategies.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/enzimologia , Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/genética , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bactérias/química , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Clonagem Molecular , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Cinética , Família Multigênica , Filogenia , Alinhamento de Sequência , Staphylococcus aureus/química , Staphylococcus aureus/genética
13.
Antioxidants (Basel) ; 9(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138219

RESUMO

Epigallocatechin-3-gallate (EGCG) has the highest antioxidant activity compared to the others catechins of green tea. However, the beneficial effects are mainly limited by its poor membrane permeability. A derivatization strategy to increase the EGCG interaction with lipid membranes is considered as one feasible approach to expand its application in lipophilic media, in particular the cellular absorption. At this purpose the hydrophilic EGCG was modified by inserting an aliphatic C18 chain linked to the gallate ring by an ethereal bond, the structure determined by NMR (Nuclear Magnetic Resonance) and confirmed by Density Functional Theory (DFT) calculations. The in vitro antioxidant activity of the mono-alkylated EGCG (C18-EGCG) was studied by the DPPH and Thiobarbituric Acid Reactive Substances (TBARS) assays, and its ability to protect cells towards oxidative stress was evaluated in Adult Retinal Pigmented Epithelium (ARPE-19) cells. Molecular Dynamics (MD) simulation and liposomal/buffer partition were used to study the interaction of the modified and unmodified antioxidants with a cell membrane model: the combined experimental-in silico approach shed light on the higher affinity of C18-EGCG toward lipid bilayer. Although the DPPH assay stated that the functionalization decreases the EGCG activity against free radicals, from cellular experiments it resulted that the lipid moiety increases the antioxidant protection of the new lipophilic derivative.

14.
Food Chem Toxicol ; 120: 578-587, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30077706

RESUMO

The redox-system is altered by oxidative stress that is initiated by oxidative agents such as lipopolysaccharides (LPS) and reactive oxygen species (ROS), which are strongly involved in chronic inflammation. Even if Manuka honey (MH) is a good source of polyphenol rich antioxidants, its antioxidant and anti-inflammatory effects are still elusive. The aim of the present work was to explore the protective effects of MH against E.coli LPS stimulated oxidative stress and inflammatory condition and the underlying mechanisms on murine RAW 264.7 macrophages. Pre-treatment with MH markedly inhibited LPS induced ROS and nitrite accumulation and increased the protection against cellular biomolecules such as lipids, proteins, and DNA. Stimulation by LPS suppressed both antioxidant enzyme activities and expressions, and Keap1-Nrf2 signaling pathway which was significantly (p < 0.05) increased in the presence of MH. The pro-inflammatory cytokines, such as TNF-α, IL-1ß and IL-6, and other inflammatory mediators (iNOS) were enhanced after LPS treatment, whereas MH suppressed the expression of these inflammatory markers. Moreover, MH also inhibited the expression of TLR4/NF-кB via IкB phosphorylation in LPS-stressed RAW 264.7 macrophages. In conclusion, MH acted as a natural agent for preventing oxidative and inflammatory-related diseases.


Assuntos
Antioxidantes/metabolismo , Enzimas/metabolismo , Mel , Inflamação/prevenção & controle , Leptospermum , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Dano ao DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Nitritos/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
15.
Free Radic Biol Med ; 126: 41-54, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30056083

RESUMO

The development of chemo-sensitizers is urgently needed to overcome 5-fluorouracil (5-FU) therapeutic resistance and adverse toxicity in colorectal cancer. This work aims to evaluate the synergic effects of 5-FU and Manuka honey (MH), a rich source of bioactive compounds, in enhancing the anticancer effects of this drug on human colon cancer HCT-116 and LoVo cells. Compared to 5-FU alone, MH synergistically enhanced the chemotherapeutic effects of 5-FU, by reducing cell proliferation through the suppression of EGFR, HER2, p-Akt and p-mTOR expression, and promoting apoptosis by the modulation pro-apoptotic (p53, Bax, Cyto c, FasL caspase-3, -8, -9 and cleave-PARP) and anti-apoptotic (Bcl-2) markers. The activations of p-p38MAPK and p-Erk1/2 pathways and ROS production were also involved in this process. Downregulation of transcription factor (NF-κB and Nrf2) and antioxidant enzyme activity (SOD, catalase, glutathione peroxidase and glutathione reductase) and expression (SOD, catalase and HO-1) were more evident after the combined treatment, leading to more cell death by oxidative stress. Moreover, additive effects were also observed by increasing lipid and protein oxidation and arresting cell cycle. All the parameters of mitochondrial respiration and glycolysis function decreased and both cells entered the quiescent stage after the combined treatments. MH also influenced the anti-metastasis effects of 5-FU by decreasing migration ability, suppressing the expression of MMP-2, MMP-9 and increasing N-cadherin and E-cadherin. In conclusion, MH could be a useful preventive or adjuvant agent in the treatment of colorectal cancer with 5-FU.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Sinergismo Farmacológico , Mel , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Leptospermum/química , Metástase Neoplásica , Proteínas de Neoplasias/genética
16.
Food Funct ; 9(4): 2145-2157, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29645049

RESUMO

Numerous investigations have been made on plant phenolic compounds and cancer prevention in recent decades. Manuka honey (MH) represents a good source of phenolic compounds such as luteolin, kaempferol, quercetin, gallic acid and syringic acid. The aim of this work was to evaluate the chemopreventive effects of MH on human colon cancer HCT-116 and LoVo cells. Both cells were exposed to different concentrations of MH (0-20 mg mL-1 for HCT-116 cells and 0-50 mg mL-1 for LoVo cells) for 48 h to measure apoptosis and cell cycle arrest as well as apoptosis and cell cycle regulatory gene and protein expression. MH exhibited profound inhibitory effects on cellular growth by reducing the proliferation ability, inducing apoptosis and arresting the cell cycle in a dose-dependent manner. Interestingly, MH treatment in non-malignant cells did not exert any significant toxicity at similar concentrations. The apoptosis event was associated with the increasing expression of p53, cleaved-PARP and caspase-3 and with the activation of both intrinsic (caspase-9) and extrinsic (caspase-8) apoptotic pathways. MH induced cell cycle arrest in the S phase in HCT-116 cells, and simultaneously, in LoVo cells, it occurred in the G2/M phase through the modulation of cell cycle regulator genes (cyclin D1, cyclin E, CDK2, CDK4, p21, p27 and Rb). The expression of p-Akt was suppressed while the expression of p-p38MAPK, p-Erk1/2 and endoplasmic stress markers (ATF6 and XBP1) was increased for apoptosis induction. Overall, these findings indicate that MH could be a promising preventive or curative food therapy for colon cancer.


Assuntos
Adenocarcinoma/prevenção & controle , Carcinoma/prevenção & controle , Neoplasias do Colo/prevenção & controle , Alimento Funcional , Mel , Leptospermum/química , Néctar de Plantas/química , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose , Biomarcadores/metabolismo , Carcinoma/metabolismo , Carcinoma/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação para Baixo , Estresse do Retículo Endoplasmático , Alimento Funcional/efeitos adversos , Alimento Funcional/análise , Regulação Neoplásica da Expressão Gênica , Mel/efeitos adversos , Mel/análise , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fase S
17.
Molecules ; 23(2)2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29462955

RESUMO

As a part of research project aimed to optimize antioxidant delivery, here we studied the influence of both salts and lipid matrix composition on the interaction of epigallocatechin-3-gallate (EGCG) with bilayer leaflets. Thus, we combined in silico and experimental methods to study the ability of neutral and anionic vesicles to encapsulate EGCG in the presence of Ca2+ and Mg2+ divalent salts. Experimental and in silico results show a very high correlation, thus confirming the efficiency of the developed methodology. In particular, we found out that the presence of calcium ions hinders the insertion of EGCG in the liposome bilayer in both neutral and anionic systems. On the contrary, the presence of MgCl2 improves the insertion degree of EGCG molecules respect to the liposomes without divalent salts. The best and most efficient salt concentration is that corresponding to a 5:1 molar ratio between Mg2+ and EGCG, in both neutral and anionic vesicles. Concerning the lipid matrix composition, the anionic one results in better promotion of the catechin insertion within the bilayer since experimentally we achieved 100% EGCG encapsulation in the lipid carrier in the presence of a 5:1 molar ratio of magnesium. Thus, the combination of this anionic liposomal formulation with magnesium chloride, avoids time-consuming separation steps of unentrapped active principle and appears particularly suitable for EGCG delivery applications.


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Sistemas de Liberação de Medicamentos , Lipossomos/farmacologia , Antioxidantes/química , Cálcio/química , Catequina/química , Catequina/farmacologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/farmacologia , Lipídeos/química , Lipossomos/química , Magnésio/química , Tamanho da Partícula
18.
Cell Chem Biol ; 24(5): 553-564.e4, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28416276

RESUMO

Adenosine 5'-tetraphosphate (Ap4) is a ubiquitous metabolite involved in cell signaling in mammals. Its full physiological significance remains unknown. Here we show that two enzymes committed to NAD biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPT), can both catalyze the synthesis and degradation of Ap4 through their facultative ATPase activity. We propose a mechanism for this unforeseen additional reaction, and demonstrate its evolutionary conservation in bacterial orthologs of mammalian NAMPT and NAPT. Furthermore, evolutionary distant forms of NAMPT were inhibited in vitro by the FK866 drug but, remarkably, it does not block synthesis of Ap4. In fact, FK866-treated murine cells showed decreased NAD but increased Ap4 levels. Finally, murine cells and plasma with engineered or naturally fluctuating NAMPT levels showed matching Ap4 fluctuations. These results suggest a role of Ap4 in the actions of NAMPT, and prompt to evaluate the role of Ap4 production in the actions of NAMPT inhibitors.


Assuntos
Nucleotídeos de Adenina/biossíntese , Nucleotídeos de Adenina/metabolismo , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Pentosiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Biocatálise , Linhagem Celular Tumoral , Evolução Molecular , Humanos , Hidrólise , Camundongos
19.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1113-1121, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28232091

RESUMO

BACKGROUND: Several species belonging to Ascomycota phylum produce extracellular ribonucleases, known as ribotoxins, which exhibit RNase activity through the cleavage of a single phosphodiester bond, located at the universally conserved sarcin/ricin loop of the large rRNA leading to inhibition of protein biosynthesis. Clarifying the structure-function relationship in ribotoxins is interesting for their use in human tumour therapy and in construction of pest resistant transgenic plants. RESULTS: The ribotoxin Ageritin has been isolated for the first time from the Basidiomycetes class. The enzyme, characterized by means of its amino acid composition, N-terminal sequence and a circular dichroism, structurally differs from Ascomycota ribotoxin prototype, although it was able, as α-sarcin, to release a specific α-fragment. However, it does not display aspecific ribonucleolytic activity. Ageritin exerts cytotoxicity and cell death promoting effects towards CNS model cell lines (SK-N-BE(2)-C, U-251 and C6), as vinblastine, a plant alkaloid used in cancer therapy. Moreover, our results indicate that Ageritin initially activates caspase-8, whereas caspase-9 cleavage was not detected, demonstrating the involvement of an extrinsic apoptotic pathway. CONCLUSIONS: Our findings show that Ageritin is the earliest diverging member of the Ascomycota ribotoxin family, suggesting that ribotoxins are more widely distributed among fungi than previously believed. GENERAL SIGNIFICANCE: Ageritin, structurally different from the widely known Ascomycota ribotoxins, with promising anti-cancer properties vs. aggressive brain tumours, has been found from the basidiomycete fungus Agrocybe aegerita. Finally, this finding highlights that the ribotoxin family has divergent members in Basidiomycota phylum, whose structural and functional characterization can give new information on ribotoxin or ribonuclease superfamilies.


Assuntos
Agaricales/química , Agrocybe/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Basidiomycota/química , Ribonucleases/química , Ribonucleases/farmacologia , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Ricina/metabolismo
20.
Food Chem ; 221: 161-168, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979136

RESUMO

Nicotinamide riboside, the most recently discovered form of vitamin B3, and its phosphorylated form nicotinamide mononucleotide, have been shown to be potent supplements boosting intracellular nicotinamide adenine dinucleotide (NAD) levels, thus preventing or ameliorating metabolic and mitochondrial diseases in mouse models. Here we report for the first time on the simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and NAD in milk by means of a fluorometric, enzyme-coupled assay. Application of this assay to milk from different species revealed that the three vitamers were present in human and donkey milk, while being selectively distributed in the other milks. Human milk was the richest source of nicotinamide mononucleotide. Overall, the three vitamers accounted for a significant fraction of total vitamin B3 content. Pasteurization did not affect the bovine milk content of nicotinamide riboside, whereas UHT processing fully destroyed the vitamin. In human milk, NAD levels were significantly affected by the lactation time.


Assuntos
Ensaios Enzimáticos/métodos , Análise de Alimentos , Leite/química , NAD/análise , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/análise , Animais , Bovinos , Equidae , Fluorometria , Manipulação de Alimentos , Humanos , Leite Humano/química , Niacinamida/análise , Pasteurização , Compostos de Piridínio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...