Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Hortic ; 4(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167546

RESUMO

The transformation and gene editing of the woody species kiwifruit are difficult and time-consuming. The fast and marker-free genetic modification system for kiwifruit has not been developed yet. Here, we establish a rapid and efficient marker-free transformation and gene editing system mediated by Agrobacterium rhizogenes for kiwifruit. Moreover, a removing-root-tip method was developed to significantly increase the regeneration efficiency of transgenic hairy roots. Through A. rhizogenes-mediated CRISPR/Cas9 gene editing, the editing efficiencies of CEN4 and AeCBL3 achieved 55 and 50%, respectively. And several homozygous knockout lines for both genes were obtained. Our method has been successfully applied in the transformation of two different species of kiwifruit (Actinidia chinensis 'Hongyang' and A.eriantha 'White'). Next, we used the method to study the formation of calcium oxalate (CaOx) crystals in kiwifruit. To date, little is known about how CaOx crystal is formed in plants. Our results indicated that AeCBL3 overexpression enhanced CaOx crystal formation, but its knockout via CRISPR/Cas9 significantly impaired crystal formation in kiwifruit. Together, we developed a fast maker-free transformation and highly efficient CRISPR-Cas9 gene editing system for kiwifruit. Moreover, our work revealed a novel gene mediating CaOx crystal formation and provided a clue to elaborate the underlying mechanisms.

2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445951

RESUMO

The hepatic matrisome is involved in the remodeling phase of liver regeneration. As the gut microbiota has been implicated in liver regeneration, we investigated its role in liver regeneration focusing on gene expression of the hepatic matrisome after partial hepatectomy (PHx) in germ-free (GF) mice, and in GF mice reconstituted with normal gut microbiota (XGF). Liver mass restoration, hepatocyte proliferation, and immune response were assessed following 70% PHx. Hepatic matrisome and collagen gene expression were also analyzed. Reduced liver weight/body weight ratio, mitotic count, and hepatocyte proliferative index at 72 h post PHx in GF mice were preceded by reduced expression of cytokine receptor genes Tnfrsf1a and Il6ra, and Hgf gene at 3 h post PHx. In XGF mice, these indices were significantly higher than in GF mice, and similar to that of control mice, indicating normal liver regeneration. Differentially expressed genes (DEGs) of the matrisome were lower in GF compared to XGF mice at both 3 h and 72 h post PHx. GF mice also demonstrated lower collagen expression, with significantly lower expression of Col1a1, Col1a2, Col5a1, and Col6a2 compared to WT mice at 72 h post PHx. In conclusion, enhanced liver regeneration and matrisome expression in XGF mice suggests that interaction of the gut microbiota and matrisome may play a significant role in the regulation of hepatic remodeling during the regenerative process.


Assuntos
Hepatectomia , Regeneração Hepática , Animais , Camundongos , Regeneração Hepática/genética , Fígado/metabolismo , Expressão Gênica
3.
Gels ; 8(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35323280

RESUMO

Hydrogels are three-dimensional, cross-linked, and supramolecular networks that can absorb significant volumes of water. Hydrogels are one of the most promising biomaterials in the biological and biomedical fields, thanks to their hydrophilic properties, biocompatibility, and wide therapeutic potential. Owing to their nontoxic nature and safe use, they are widely accepted for various biomedical applications such as wound dressing, controlled drug delivery, bone regeneration, tissue engineering, biosensors, and artificial contact lenses. Herein, this review comprises different synthetic strategies for hydrogels and their chemical/physical characteristics, and various analytical, optical, and spectroscopic tools for their characterization are discussed. A range of synthetic approaches is also covered for the synthesis and design of hydrogels. It will also cover biomedical applications such as bone regeneration, tissue engineering, and drug delivery. This review addressed the fundamental, general, and applied features of hydrogels in order to facilitate undergraduates, graduates, biomedical students, and researchers in a variety of domains.

4.
Cell Rep ; 36(2): 109384, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260941

RESUMO

The chloroplast is the main organelle for stress-induced production of reactive oxygen species (ROS). However, how chloroplastic ROS homeostasis is maintained under salt stress is largely unknown. We show that EGY3, a gene encoding a chloroplast-localized protein, is induced by salt and oxidative stresses. The loss of EGY3 function causes stress hypersensitivity while EGY3 overexpression increases the tolerance to both salt and chloroplastic oxidative stresses. EGY3 interacts with chloroplastic Cu/Zn-SOD2 (CSD2) and promotes CSD2 stability under stress conditions. In egy3-1 mutant plants, the stress-induced CSD2 degradation limits H2O2 production in chloroplasts and impairs H2O2-mediated retrograde signaling, as indicated by the decreased expression of retrograde-signal-responsive genes required for stress tolerance. Both exogenous application of H2O2 (or APX inhibitor) and CSD2 overexpression can rescue the salt-stress hypersensitivity of egy3-1 mutants. Our findings reveal that EGY3 enhances the tolerance to salt stress by promoting the CSD2 stability and H2O2-mediated chloroplastic retrograde signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Homeostase , Espécies Reativas de Oxigênio , Estresse Salino , Transdução de Sinais , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Modelos Biológicos , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA