Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 124(31): 6709-6720, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32639157

RESUMO

Intrinsically disordered proteins (IDPs) are important for biological functions. In contrast to folded proteins, molecular recognition among certain IDPs is "fuzzy" in that their binding and/or phase separation are stochastically governed by the interacting IDPs' amino acid sequences, while their assembled conformations remain largely disordered. To help elucidate a basic aspect of this fascinating yet poorly understood phenomenon, the binding of a homo or heterodimeric pair of polyampholytic IDPs is modeled statistical mechanically using cluster expansion. We find that the binding affinities of binary fuzzy complexes in the model correlate strongly with a newly derived simple "joint sequence charge decoration" parameter readily calculable from the pair of IDPs' sequence charge patterns. Predictions by our analytical theory are in essential agreement with coarse-grained explicit-chain simulations. This computationally efficient theoretical framework is expected to be broadly applicable to rationalizing and predicting sequence-specific IDP-IDP polyelectrostatic interactions.


Assuntos
Proteínas Intrinsicamente Desordenadas , Sequência de Aminoácidos
2.
J Control Release ; 293: 10-20, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30419267

RESUMO

Therapeutic protein delivery directly to the eye is a promising strategy to treat retinal degeneration; yet, the high risks of local drug overdose and cataracts associated with bolus injection have limited progress, requiring the development of sustained protein delivery strategies. Since the vitreous humor itself is a gel, hydrogel-based release systems are a sensible solution for sustained intravitreal protein delivery. Using ciliary neurotrophic factor (CNTF) as a model protein for ocular treatment, we investigated the use of an intravitreal, affinity-based release system for protein delivery. To sustain CNTF release, we took advantage of the affinity between Src homology 3 (SH3) and its peptide binding partners: CNTF was expressed as a fusion protein with SH3, and a thermogel of hyaluronan and methylcellulose (HAMC) was modified with SH3 binding peptides. Using a mathematical model, the hydrogel composition was successfully designed to release CNTF-SH3 over 7 days. The stability and bioactivity of the released protein were similar to those of commercial CNTF. Intravitreal injections of the bioengineered thermogel showed successful delivery of CNTF-SH3 to the mouse retina, with expected transient downregulation of phototransduction genes (e.g., rhodopsin, S-opsin, M-opsin, Gnat 1 and 2), upregulation of STAT1 and STAT3 expression, and upregulation of STAT3 phosphorylation. This constitutes the first demonstration of intravitreal protein release from a hydrogel. Immunohistochemical analysis of the retinal tissues of injected eyes confirmed the biocompatibility of the delivery vehicle, paving the way towards new intravitreal protein delivery strategies.


Assuntos
Fator Neurotrófico Ciliar/administração & dosagem , Hidrogéis/administração & dosagem , Retina/metabolismo , Animais , Preparações de Ação Retardada/administração & dosagem , Feminino , Ácido Hialurônico/administração & dosagem , Injeções Intravítreas , Masculino , Metilcelulose/administração & dosagem , Camundongos Endogâmicos C57BL , Modelos Teóricos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo
3.
Phys Chem Chem Phys ; 20(45): 28558-28574, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30397688

RESUMO

Biomolecular condensates undergirded by phase separations of proteins and nucleic acids serve crucial biological functions. To gain physical insights into their genetic basis, we study how liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) depends on their sequence charge patterns using a continuum Langevin chain model wherein each amino acid residue is represented by a single bead. Charge patterns are characterized by the "blockiness" measure κ and the "sequence charge decoration" (SCD) parameter. Consistent with random phase approximation (RPA) theory and lattice simulations, LLPS propensity as characterized by critical temperature Tcr* increases with increasingly negative SCD for a set of sequences showing a positive correlation between κ and -SCD. Relative to RPA, the simulated sequence-dependent variation in Tcr* is often-though not always-smaller, whereas the simulated critical volume fractions are higher. However, for a set of sequences exhibiting an anti-correlation between κ and -SCD, the simulated Tcr*'s are quite insensitive to either parameter. Additionally, we find that blocky sequences that allow for strong electrostatic repulsion can lead to coexistence curves with upward concavity as stipulated by RPA, but the LLPS propensity of a strictly alternating charge sequence was likely overestimated by RPA and lattice models because interchain stabilization of this sequence requires spatial alignments that are difficult to achieve in real space. These results help delineate the utility and limitations of the charge pattern parameters and of RPA, pointing to further efforts necessary for rationalizing the newly observed subtleties.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Modelos Químicos , Modelos Moleculares , Algoritmos , Sequência de Aminoácidos , Transição de Fase , Conformação Proteica , Eletricidade Estática , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...