Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (184)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35781541

RESUMO

Human fetal tissue-derived enteroids are emerging as a promising in vitro model to study intestinal injuries in preterm infants. Enteroids exhibit polarity, consisting of a lumen with an apical border, tight junctions, and a basolateral outer layer exposed to growth media. The consequences of intestinal injuries include mucosal inflammation and increased permeability. Testing intestinal permeability in vulnerable preterm human subjects is often not feasible. Thus, an in vitro fetal tissue-derived intestinal model is needed to study intestinal injuries in preterm infants. Enteroids can be used to test changes in epithelial permeability regulated by tight junction proteins. In enteroids, intestinal stem cells differentiate into all epithelial cell types and form a three-dimensional structure on a basement membrane matrix secreted by mouse sarcoma cells. In this article, we describe the methods used for establishing enteroids from fetal intestinal tissue, characterizing the enteroid tight junction proteins with immunofluorescent imaging, and testing epithelial permeability. As gram-negative dominant bacterial dysbiosis is a known risk factor for intestinal injury, we used lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, to induce permeability in the enteroids. Fluorescein-labeled dextran was microinjected into the enteroid lumen, and serial dextran concentrations leaked into the culture media were measured to quantify the changes in paracellular permeability. The experiment showed that apical exposure to LPS induces epithelial permeability in a concentration-dependent manner. These findings support the hypothesis that gram-negative dominant dysbiosis contributes to the mechanism of intestinal injury in preterm infants.


Assuntos
Traumatismos Abdominais , Dextranos , Animais , Meios de Cultura , Disbiose , Feto , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Lipopolissacarídeos , Camundongos , Permeabilidade , Proteínas de Junções Íntimas
2.
Sci Rep ; 7(1): 7770, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798394

RESUMO

Anaesthetic molecules act on synaptic transmission via the allosteric modulation of ligand-gated chloride channels, such as hetero-oligomeric α1ß2γ2 GABAA receptors. To elucidate the overall activation paradigm via allosteric versus orthosteric sites, we used highly homologous, but homo-oligomeric, ρ1 receptors that are contrastingly insensitive to anaesthetics and respond partially to several full GABA α1ß2γ2 receptor agonists. Here, we coexpressed varying ratios of RNAs encoding the wild-type and the mutated ρ1 subunits, which are anaesthetic-sensitive and respond with full efficacy to partial GABA agonists, to generate distinct ensembles of receptors containing five, four, three, two, one, or zero mutated subunits. Using these experiments, we then demonstrate that, in the pentamer, three anaesthetic-sensitive ρ1 subunits are needed to impart full efficacy to the partial GABA agonists. By contrast, five anaesthetic-sensitive subunits are required for direct activation by anaesthetics alone, and only one anaesthetic-sensitive subunit is sufficient to confer the anaesthetic-dependent potentiation to the GABA current. In conclusion, our data indicate that GABA and anaesthetics holistically activate the GABAA ρ1 receptor through distinct subunit level rearrangements and suggest that in contrast to the global impact of GABA via orthosteric sites, the force of anaesthetics through allosteric sites may not propagate to the neighbouring subunits and, thus, may have only a local and limited effect on the ρ1 GABAA receptor model system.


Assuntos
Anestésicos/farmacologia , Moduladores GABAérgicos/farmacologia , Receptores de GABA-A/metabolismo , Regulação Alostérica , Sítio Alostérico , Animais , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Xenopus
3.
Cell Physiol Biochem ; 36(2): 670-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25998606

RESUMO

BACKGROUND: Vasopressin induced trafficking of aquaporin-2 (AQP2) containing vesicles has been studied in kidney cell lines using conventional fluorescent proteins as tags. However, trafficking of fluorescent tagged AQP2, which resembles the vectorial translocation of native AQP2 from cytoplasm to apical membrane has not been demonstrated at real time. Using a photoconvertible fluorescent protein tag on AQP2 might allow the simultaneous tracking of two separate populations of AQP2 vesicle after subcellular local photoconversion. METHODS: A spacer was used to link a photoconvertible fluorescent protein (mEos2) to the amino-terminus of AQP2. The DNA constructs were expressed in mpkCCD cells. The trafficking of chimeric protein was visualized with high speed confocal microscopy in 4 dimensions. RESULTS: Chimeric AQP2 expressed in mpkCCD cell conferred osmotic water permeability to the cells. Subcellular photoconversion with a 405 nm laser pulse converted green chimeras to red chimeras locally. Forskolin stimulation triggered chimeric AQP2 to translocate from acidic organelles to apical plasma membrane. By serendipity, the rate of apical accumulation was found to increase when mEos2 was tagged to the carboxyl-terminus in at least one of the AQP2 molecules within the tetramer. CONCLUSION: Functional photoconvertible chimeric AQP2 was successfully expressed in mpkCCD cells, in which forskolin induced apical trafficking and accumulation of chimeric AQP2. The proof-of-concept to monitor two populations of AQP2 vesicle simultaneously was demonstrated.


Assuntos
Aquaporina 2/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Água/metabolismo , Animais , Aquaporina 2/análise , Aquaporina 2/genética , Linhagem Celular , Colforsina/farmacologia , Expressão Gênica , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Pressão Osmótica , Permeabilidade , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
4.
Zebrafish ; 11(5): 434-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25026365

RESUMO

Bartonella henselae (Bh) is an emerging zoonotic pathogen that has been associated with a variety of human diseases, including bacillary angiomatosis that is characterized by vasoproliferative tumor-like lesions on the skin of some immunosuppressed individuals. The study of Bh pathogenesis has been limited to in vitro cell culture systems due to the lack of an animal model. Therefore, we wanted to investigate whether the zebrafish embryo could be used to model human infection with Bh. Our data showed that Tg(fli1:egfp)(y1) zebrafish embryos supported a sustained Bh infection for 7 days with >10-fold bacterial replication when inoculated in the yolk sac. We showed that Bh recruited phagocytes to the site of infection in the Tg(mpx:GFP)uwm1 embryos. Infected embryos showed evidence of a Bh-induced angiogenic phenotype and an increase in the expression of genes encoding pro-inflammatory factors and pro-angiogenic markers. However, infection of zebrafish embryos with a deletion mutant in the major adhesin (BadA) resulted in little or no bacterial replication and a diminished host response, providing the first evidence that BadA is critical for in vivo infection. Thus, the zebrafish embryo provides the first practical model of Bh infection that will facilitate efforts to identify virulence factors and define molecular mechanisms of Bh pathogenesis.


Assuntos
Angiomatose Bacilar/imunologia , Bartonella henselae/fisiologia , Modelos Animais de Doenças , Peixe-Zebra , Angiomatose Bacilar/genética , Angiomatose Bacilar/microbiologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/imunologia , Embrião não Mamífero/microbiologia , Humanos , Viabilidade Microbiana , Microinjeções , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
5.
J Neurosci ; 28(20): 5383-93, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18480294

RESUMO

Phencyclidine (PCP) and ketamine are dissociative anesthetics capable of inducing analgesia, psychomimetic behavior, and a catatonic state of unconsciousness. Despite broad similarities, there are notable differences between the clinical actions of ketamine and PCP. Ketamine has a lower incidence of adverse effects and generally produces greater CNS depression than PCP. Both noncompetitively inhibit NMDA receptors, yet there is little evidence that these drugs affect GABA(A) receptors, the primary target of most anesthetics. alpha6beta2/3delta receptors are subtypes of the GABA(A) receptor family and are abundantly expressed in granular neurons within the adult cerebellum. Here, using an oocyte expression system, we show that at anesthetically relevant concentrations, ketamine, but not PCP, modulates alpha6beta2delta and alpha6beta3delta receptors. Additionally, at higher concentrations, ketamine directly activates these GABA(A) receptors. Comparatively, dizocilpine (MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]), a potent noncompetitive antagonist of NMDA receptors that is structurally unrelated to PCP, did not produce any effect on alpha6beta2delta receptors. Of the recombinant GABA(A) receptor subtypes examined (alpha1beta2, alpha1beta2gamma2, alpha1beta2delta, alpha4beta2gamma2, alpha4beta2delta, alpha6beta2gamma2, alpha6beta2delta, and alpha6beta3delta), the actions of ketamine were unique to alpha6beta2delta and alpha6beta3delta receptors. In dissociated granule neurons and cerebellar slice recordings, ketamine potentiated the GABAergic conductance arising from alpha6-containing GABA(A) receptors, whereas PCP showed no effect. Furthermore, ketamine potentiation was absent in cerebellar granule neurons from transgenic functionally null alpha6(-/-) and delta(-/-)mice. These findings suggest that the higher CNS depressant level achieved by ketamine may be the result of its selective actions on alpha6beta2/3delta receptors.


Assuntos
Córtex Cerebelar/efeitos dos fármacos , Ketamina/farmacologia , Neurônios/efeitos dos fármacos , Fenciclidina/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Anestésicos Dissociativos/farmacologia , Animais , Células Cultivadas , Córtex Cerebelar/metabolismo , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/metabolismo , Oócitos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Xenopus laevis
6.
J Physiol ; 581(Pt 3): 1001-18, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17395622

RESUMO

The onset of motor learning in rats coincides with exclusive expression of GABAA receptors containing alpha6 and delta subunits in the granule neurons of the cerebellum. This development temporally correlates with the presence of a spontaneously active chloride current through alpha6-containing GABAA receptors, known as tonic inhibition. Here we report that the coexpression of alpha6, beta2, and delta subunits produced receptor-channels which possessed two distinct and separable states of agonist affinity, one exhibiting micromolar and the other nanomolar affinities for GABA. The high-affinity state was associated with a significant level of spontaneous channel activity. Increasing the level of expression or the ratio of beta2 to alpha6 and delta subunits increased the prevalence of the high-affinity state. Comparative studies of alpha6beta2delta, alpha1beta2delta, alpha6beta2gamma2, alpha1beta2gamma2 and alpha4beta2delta receptors under equivalent levels of expression demonstrated that the significant level of spontaneous channel activity is uniquely attributable to alpha6beta2delta receptors. The pharmacology of spontaneous channel activity arising from alpha6beta2delta receptor expression corresponded to that of tonic inhibition. For example, GABAA receptor antagonists, including furosemide, blocked the spontaneous current. Further, the neuroactive steroid 5alpha-THDOC and classical glycine receptor agonists beta-alanine and taurine directly activated alpha6beta2delta receptors with high potency. Specific mutation within the GABA-dependent activation domain (betaY157F) impaired both low- and high-affinity components of GABA agonist activity in alpha6betaY157Fdelta receptors, but did not attenuate the spontaneous current. In comparison, a mutation located between the second and third transmembrane segments of the delta subunit (deltaR287M) significantly diminished the nanomolar component and the spontaneous activity. The possibility that the high affinity state of the alpha6beta2delta receptor modulates the granule neuron activity as well as potential mechanisms affecting its expression are discussed.


Assuntos
Agonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Bicuculina/farmacologia , Crotonatos/farmacologia , Desoxicorticosterona/análogos & derivados , Desoxicorticosterona/farmacologia , Relação Dose-Resposta a Droga , Feminino , Furosemida/farmacologia , Antagonistas GABAérgicos/farmacologia , Imidazóis/farmacologia , Microinjeções , Mutação , Neurônios/metabolismo , Oócitos , Picrotoxina/análogos & derivados , Picrotoxina/farmacologia , Piridazinas/farmacologia , Ratos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Sesterterpenos , Taurina/farmacologia , Xenopus laevis , Zinco/farmacologia , beta-Alanina/farmacologia
7.
Mol Pharmacol ; 66(3): 420-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15322233

RESUMO

Fast synaptic transmission in mammalian autonomic ganglia is mediated primarily by nicotinic receptors, and one of the most abundant nicotinic acetylcholine receptor subtypes in these neurons contains the alpha7 subunit (alpha7-nAChRs). Unlike alpha7-nAChRs expressed in other cells, the predominant alpha7-nAChR subtype found in rat intracardiac and superior cervical ganglion neurons exhibits a slow rate of desensitization and is reversibly blocked by alpha-bungarotoxin (alphaBgt). We report here the identification of an alpha7 subunit sequence variant in rat autonomic neurons that incorporates a novel 87-base pair cassette exon in the N terminus of the receptor and preserves the reading frame of the transcript. This alpha7 isoform was detected using reverse transcriptase-polymerase chain reaction techniques in neonatal rat brain and intracardiac and superior cervical ganglion neurons. Immunoblot experiments using a polyclonal antibody directed against the deduced amino acid sequence of the alpha7-2 insert showed a pattern of expression consistent with alpha7-2 subunit mRNA distribution. Moreover, the alpha7-2 subunit could be immunodepleted from protein extracts by solid-phase immunoprecipitation techniques using the anti-alpha7 monoclonal antibody 319. The alpha7-2 subunit was shown to form functional homomeric ion channels that were activated by acetylcholine and blocked by alpha-bungarotoxin when expressed in Xenopus laevis oocytes. This alpha7 isoform exhibited a slow rate of desensitization, and inhibition of these channels by alphaBgt reversed rapidly after washout. Taken together, these data indicate that the alpha7-2 subunit is capable of forming functional alphaBgt-sensitive acetylcholine receptors that resemble the alpha7-nAChRs previously identified in rat autonomic neurons. Furthermore, the distribution of the alpha7-2 isoform is not limited to peripheral neurons.


Assuntos
Processamento Alternativo , Canais Iônicos/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Isoformas de Proteínas/genética , Ratos , Receptores Nicotínicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
8.
Mol Pharmacol ; 66(1): 56-69, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15213296

RESUMO

Rho(1) receptor-channels (rho(1)Rs) are GABA-gated chloride channels that exhibit slow kinetics, little desensitization, and inert pharmacology to most anesthetics, except for neuroactive steroids (NSs). NSs differentially modulate rho(1)Rs dependent on the steric arrangement of the hydrogen atom at the fifth carbon position. In particular, the NS allotetrahydrodeoxycorticosterone (5alpha-THDOC) potentiates, whereas 5beta-pregnane-3alpha-ol-20-one (pregnanolone) and 5beta-dihydroprogesterone (5beta-DHP) inhibit rho(1) GABA currents. Here, we used Xenopus laevis oocytes expressing rho(1)Rs as a model system to study the mechanism of NS modulation. The second transmembrane residue, Ile307, was mutated to 16 amino acids. Subsequent testing of these mutants with 5alpha- and 5beta-NSs, at equivalent GABA activity, showed the following paradigm. For 5beta-DHP, Ile307 mutation either altered the degree of inhibition or entirely reversed the direction of modulation, rendering 5beta-DHP a potentiator. Dependent on the mutation, pregnanolone remained an inhibitor, transformed into a potentiator, or converted to inhibitor and potentiator based on concentration. The extent of mode reversal for both 5beta compounds showed a correlation with the side-chain hydrophilicity of the 307 residue. In contrast, Ile307 substitutions did not alter the direction of modulation for 5alpha-THDOC but caused a significant increase in the level of potentiation. Paradoxical to their impact on the mode and/or the degree of modulation, none of the mutations altered the concentration range producing the response significantly for any of the above NSs. Moreover, preincubation of Ile307 mutants with 5alpha or 5beta alone produced an equivalent effect on the activation time course. Based on the above data, a universal model is presented wherein anesthetic compounds like NSs can potentiate or inhibit the activity of ligand-gated ion channels distinct from interaction with alternative binding sites.


Assuntos
5-alfa-Di-Hidroprogesterona/farmacologia , Corticosterona/análogos & derivados , Receptores de GABA-A/metabolismo , Substituição de Aminoácidos , Animais , Corticosterona/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Isoleucina/genética , Cinética , Pregnanodionas/farmacologia , Pregnanolona/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/genética , Serina/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA