Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649187

RESUMO

All cancer cells reprogram metabolism to support aberrant growth. Here, we report that cancer cells employ and depend on imbalanced and dynamic heme metabolic pathways, to accumulate heme intermediates, that is, porphyrins. We coined this essential metabolic rewiring "porphyrin overdrive" and determined that it is cancer-essential and cancer-specific. Among the major drivers are genes encoding mid-step enzymes governing the production of heme intermediates. CRISPR/Cas9 editing to engineer leukemia cell lines with impaired heme biosynthetic steps confirmed our whole-genome data analyses that porphyrin overdrive is linked to oncogenic states and cellular differentiation. Although porphyrin overdrive is absent in differentiated cells or somatic stem cells, it is present in patient-derived tumor progenitor cells, demonstrated by single-cell RNAseq, and in early embryogenesis. In conclusion, we identified a dependence of cancer cells on non-homeostatic heme metabolism, and we targeted this cancer metabolic vulnerability with a novel "bait-and-kill" strategy to eradicate malignant cells.


Assuntos
Sistemas CRISPR-Cas , Heme , Porfirinas , Humanos , Heme/metabolismo , Porfirinas/metabolismo , Porfirinas/farmacologia , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/genética , Redes e Vias Metabólicas/genética , Diferenciação Celular/genética , Edição de Genes , Animais , Camundongos
3.
Am J Hematol ; 99(6): 1040-1055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440831

RESUMO

Myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocytosis, and primary myelofibrosis, are clonal hematopoietic neoplasms driven by mutationally activated signaling by the JAK2 tyrosine kinase. Although JAK2 inhibitors can improve MPN patients' quality of life, they do not induce complete remission as disease-driving cells persistently survive therapy. ERK activation has been highlighted as contributing to JAK2 inhibitor persistent cell survival. As ERK is a component of signaling by activated RAS proteins and by JAK2 activation, we sought to inhibit RAS activation to enhance responses to JAK2 inhibition in preclinical MPN models. We found the SHP2 inhibitor RMC-4550 significantly enhanced growth inhibition of MPN cell lines in combination with the JAK2 inhibitor ruxolitinib, effectively preventing ruxolitinib persistent growth, and the growth and viability of established ruxolitinib persistent cells remained sensitive to SHP2 inhibition. Both SHP2 and JAK2 inhibition diminished cellular RAS-GTP levels, and their concomitant inhibition enhanced ERK inactivation and increased apoptosis. Inhibition of SHP2 inhibited the neoplastic growth of MPN patient hematopoietic progenitor cells and exhibited synergy with ruxolitinib. RMC-4550 antagonized MPN phenotypes and increased survival of an MPN mouse model driven by MPL-W515L. The combination of RMC-4550 and ruxolitinib, which was safe and tolerated in healthy mice, further inhibited disease compared to ruxolitinib monotherapy, including extending survival. Given SHP2 inhibitors are undergoing clinical evaluation in patients with solid tumors, our preclinical findings suggest that SHP2 is a candidate therapeutic target with potential for rapid translation to clinical assessment to improve current targeted therapies for MPN patients.


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Nitrilas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Pirazóis , Pirimidinas , Janus Quinase 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Animais , Transtornos Mieloproliferativos/tratamento farmacológico , Humanos , Camundongos , Nitrilas/uso terapêutico , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
4.
Blood ; 135(3): 191-207, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31750881

RESUMO

Protein acetylation is an important contributor to cancer initiation. Histone deacetylase 6 (HDAC6) controls JAK2 translation and protein stability and has been implicated in JAK2-driven diseases best exemplified by myeloproliferative neoplasms (MPNs). By using novel classes of highly selective HDAC inhibitors and genetically deficient mouse models, we discovered that HDAC11 rather than HDAC6 is necessary for the proliferation and survival of oncogenic JAK2-driven MPN cells and patient samples. Notably, HDAC11 is variably expressed in primitive stem cells and is expressed largely upon lineage commitment. Although Hdac11is dispensable for normal homeostatic hematopoietic stem and progenitor cell differentiation based on chimeric bone marrow reconstitution, Hdac11 deficiency significantly reduced the abnormal megakaryocyte population, improved splenic architecture, reduced fibrosis, and increased survival in the MPLW515L-MPN mouse model during primary and secondary transplantation. Therefore, inhibitors of HDAC11 are an attractive therapy for treating patients with MPN. Although JAK2 inhibitor therapy provides substantial clinical benefit in MPN patients, the identification of alternative therapeutic targets is needed to reverse MPN pathogenesis and control malignant hematopoiesis. This study establishes HDAC11 as a unique type of target molecule that has therapeutic potential in MPN.


Assuntos
Hematopoese , Histona Desacetilases/fisiologia , Mutação , Transtornos Mieloproliferativos/patologia , Oncogenes , Animais , Apoptose , Ciclo Celular , Proliferação de Células , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Células Tumorais Cultivadas
5.
Blood Adv ; 3(22): 3503-3514, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31725895

RESUMO

Aberrant JAK2 tyrosine kinase signaling drives the development of Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. However, JAK2 kinase inhibitors have failed to significantly reduce allele burden in MPN patients, underscoring the need for improved therapeutic strategies. Members of the PIM family of serine/threonine kinases promote cellular proliferation by regulating a variety of cellular processes, including protein synthesis and the balance of signaling that regulates apoptosis. Overexpression of PIM family members is oncogenic, exemplified by their ability to induce lymphomas in collaboration with c-Myc. Thus, PIM kinases are potential therapeutic targets for several malignancies such as solid tumors and blood cancers. We and others have shown that PIM inhibitors augment the efficacy of JAK2 inhibitors by using in vitro models of MPNs. Here we report that the recently developed pan-PIM inhibitor INCB053914 augments the efficacy of the US Food and Drug Administration-approved JAK1/2 inhibitor ruxolitinib in both in vitro and in vivo MPN models. INCB053914 synergizes with ruxolitinib to inhibit cell growth in JAK2-driven MPN models and induce apoptosis. Significantly, low nanomolar INCB053914 enhances the efficacy of ruxolitinib to inhibit the neoplastic growth of primary MPN patient cells, and INCB053914 antagonizes ruxolitinib persistent myeloproliferation in vivo. These findings support the notion that INCB053914, which is currently in clinical trials in patients with advanced hematologic malignancies, in combination with ruxolitinib may be effective in MPN patients, and they support the clinical testing of this combination in MPN patients.


Assuntos
Inibidores de Janus Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Pirazóis/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Xenoenxertos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Nitrilas , Pirimidinas , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...