Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 107(3): 761-772, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30194897

RESUMO

Oral hygiene and regular maintenance are crucial for preserving good peri-implant health. However, available prophylaxis products and toothpastes, which are optimized for cleaning teeth, tend to contaminate and abrade implant surfaces due to their organic components and silica microparticles, respectively. This study aims to develop an organic-free implant-paste based on two-dimensional nanocrystalline magnesium phosphate gel and hydrated silica nanoparticles (20-30% w/w) for cleaning oral biofilm on titanium dental implants. The surface chemistry, morphology, and bacterial load of contaminated Ti disks before and after decontamination using prophylaxis brushing with toothpaste and implant-paste were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, and fluorescence spectroscopy. Both commercial toothpastes and implant-paste remove bacteria, however, only implant-paste protects Ti metal from abrasion and removes organic contaminants. XPS showed a significant decrease of carbon contamination from 73% ± 2 to 20% ± 2 after mechanical brushing with implant-paste compared to 41% ± 11 when brushing with commercial toothpastes (p < 0.05). Fluorescence microscopy revealed that bacteria load on biofilm contaminated Ti (44 × 103 ± 27 × 103 /µm2 ) was significantly reduced with the implant-paste to 2 × 103 ± 1 × 102 /µm2 and with a commercial toothpaste to 2.9 × 103 ± 7·102 /µm2 . This decay is relatively higher than the removal achieved using rotary prophylaxis brush alone (5 × 103 ± 1 × 103 /µm2 , p < 0.05). Accordingly, this novel implant-paste shows a great promise as an efficient decontamination approach. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 761-772, 2019.


Assuntos
Biofilmes/efeitos dos fármacos , Descontaminação , Implantes Dentários/microbiologia , Nanocompostos , Adulto , Biofilmes/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Nanocompostos/química , Nanocompostos/uso terapêutico , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Propriedades de Superfície
2.
Acta Biomater ; 80: 425-434, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30244027

RESUMO

Biomedical and dental prostheses combining polymers with metals often suffer failure at the interface. The weak chemical bond between these two dissimilar materials can cause debonding and mechanical failure. This manuscript introduces a new mechanical interlocking technique to strengthen metal/polymer interfaces through optimized additively manufactured features on the metal surface. To reach an optimized design of interlocking features, we started with the bio-mimetic stress-induced material transformation (SMT) optimization method. The considered polymer and metal materials were cold-cured Poly(methyl methacrylate) (PMMA) and laser-sintered Cobalt-Chromium (Co-Cr), respectively. Optimal dimensions of the bio-inspired interlocking features were then determined by mesh adaptive direct search (MADS) algorithm combined with finite element analysis (FEA) and tensile experiments such that they provide the maximum interfacial tensile strength and stiffness while minimizing the stress in PMMA and the displacement of PMMA at the Co-Cr/PMMA interface. The SMT optimization process suggested a Y-shape as a more favorable design, which was similar to mangrove tree roots. Experiments confirmed that our optimized interlocking features increased the strength of the Co-Cr/PMMA interface from 2.3 MPa (flat interface) to 34.4 ±â€¯1 MPa, which constitutes 85% of the tensile failure strength of PMMA (40.2 ±â€¯1 MPa). STATEMENT OF SIGNIFICANCE: The objective of this study was to improve metal/polymer interfacial strength in dental and orthopedic prostheses. This was achieved by additive manufacturing of optimized interlocking features on metallic surfaces using laser-sintering. The interlocking design of the features, which was a Y-shape similar to the roots of mangrove trees, was inspired by a bio-memetic optimization algorithm. This interlocking design lowered the PMMA displacement at the Co-Cr/PMMA interface by 70%, enhanced the interfacial strength by more than 12%, and increased the stiffness by 18% compared with a conventional bead design, meanwhile no significant difference was found in the toughness of both designs.


Assuntos
Biomimética/métodos , Metais/química , Polímeros/química , Próteses e Implantes , Análise de Elementos Finitos , Polimetil Metacrilato/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...