Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Biochem Mol Biol ; 12(4): 575-585, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39086586

RESUMO

Background: Doxorubicin, a commonly utilized anthracycline antibiotic and chemotherapeutic agent, has been associated with hepatotoxicity as an adverse effect. This study aimed to evaluate protective effects of zingerone, a bioactive compound derived from ginger renowned for its antioxidative attributes, on oxidative stress in doxorubicin-induced rat hepatotoxicity. Methods: In this experimental study, a total of 48 male Wistar rats were allocated into six distinct groups. The first group received a control treatment of normal saline. The second group was administered an intraperitoneal dose of 20 mg/kg of doxorubicin on day 5. The third group received an oral dose of 40 mg/kg of zingerone for 8 days. The fourth, fifth, and sixth groups were administered zingerone at doses of 10, 20, and 40 mg/kg, respectively, for the same 8-day period. On day 5, all groups, except the control group, received an intraperitoneal injection of doxorubicin. Following a 72-hour interval, the animals were anesthetized, and blood samples were collected to assess serum factors. Moreover, portions of the liver tissue were subjected to histopathological analysis and assessment of oxidative stress parameters. Results: The activity levels of serum enzymes, including aspartate transaminase (AST), alanine transaminase (ALT), and liver malondialdehyde (MDA), increased in the doxorubicin group. Conversely, the levels of other parameters such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and glutathione (GSH) decreased. However, the co-administration of zingerone effectively reversed these levels, restoring them back to normal. Conclusions: These findings suggest that zingerone, particularly at a high dose, exhibit a hepatoprotective effect in the doxorubicin-induced hepatotoxicity model.

2.
Mult Scler Relat Disord ; 84: 105512, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428292

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an immune system disorder that affects the central nervous system (CNS) and progressively damages nerve fibers and protective myelin. People with MS often experience a wide range of complications, including lower urinary tract dysfunction, urinary tract infections (UTIs) and sexual dysfunction. MS is common in young people and can lead to sexual dysfunction (SD) and infertility, which becomes more pronounced as the disease progresses. RESULTS: Over the past two decades, significant advances have been made in the management of MS, which may slow the progression of the disease and alter its course. However, UTI and SD remain significant challenges for these patients. Awareness of the underlying complications of MS, such as UTIs and infertility, is crucial for prevention, early detection and appropriate treatment, as there is a causal relationship between UTIs and the use of corticosteroids during an attack. CONCLUSION: This article provides an overview of potential microbial pathogens that contribute to the development of MS, as well as an assessment of people with MS who report UTIs and infertility.


Assuntos
Infertilidade , Esclerose Múltipla , Infecções Urinárias , Humanos , Adolescente , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico , Infecções Urinárias/complicações , Infecções Urinárias/diagnóstico , Infertilidade/complicações
3.
Rep Biochem Mol Biol ; 12(2): 306-317, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38317816

RESUMO

Background: Environmental pollution has a profound impact on both human and animal life. Khuzestan province, which has been plagued by intense dust storms and pollution for decades, is the focus of this study. The research aims to investigate the protective effects of metformin against the toxicity of particulate matter in the livers of rats. Methods: Male Wistar rats were selected for the study and divided into six groups: a control group, Metformin-treated groups, Iraqi dust-exposed group (Iraqi-D), Local dust-exposed group (Local-D), Iraqi dust-exposed with Metformin treatment group (Iraqi-D+Metformin), and Local dust-exposed with Metformin treatment group (Local-D+Metformin). The rats were exposed to local and Iraqi dust through a nebulizer and received oral metformin for a duration of 21 days. At the end of the intervention, liver biomarkers and oxidative stress factors were evaluated enzymatically. Results: The study revealed that rats exposed to Iraqi and local dust experienced a significant increase in liver biomarkers, including aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALK) levels, alongside a decrease in glutathione (GSH) concentrations and an increase in malondialdehyde (MDA) levels. However, treatment with metformin was effective in preventing the increase in these biomarkers, restoring GSH levels, and averting the rise in MDA levels, as compared to the control group. Conclusions: Exposure to particulate matter from Iraq and the local region can induce alterations in biomarkers and oxidative stress levels in the rat liver, and these effects can be mitigated through metformin treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA