Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36984248

RESUMO

A single crystalline layered semiconductor In1.2Ga0.8S3 phase was grown, and by intercalating p-aminopyridine (NH2-C5H4N or p-AP) molecules into this crystal, a new intercalation compound, In1.2Ga0.8S3·0.5(NH2-C5H4N), was synthesized. Further, by substituting p-AP molecules with p-ethylenediamine (NH2-CH2-CH2-NH2 or p-EDA) in this intercalation compound, another new intercalated compound-In1.2Ga0.8S3·0.5(NH2-CH2-CH2-NH2) was synthesized. It was found that the single crystallinity of the initial In1.2Ga0.8S3 samples was retained after their intercalation despite a strong deterioration in quality. The thermal peculiarities of both the intercalation and deintercalation of the title crystal were determined. Furthermore, the unit cell parameters of the intercalation compounds were determined from X-ray diffraction data (XRD). It was found that increasing the c parameter corresponded to the dimension of the intercalated molecule. In addition to the intercalation phases' experimental characterization, the lattice dynamical properties and the electronic and bonding features of the stoichiometric GaInS3 were calculated using the Density Functional Theory within the Generalized Gradient Approximations (DFT-GGA). Nine Raman-active modes were observed and identified for this compound. The electronic gap was found to be an indirect one and the topological analysis of the electron density revealed that the interlayer bonding is rather weak, thus enabling the intercalation of organic molecules.

2.
ACS Nano ; 14(7): 9059-9065, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32628444

RESUMO

Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.

3.
Phys Rev Lett ; 111(20): 206803, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24289701

RESUMO

A topological surface state that is protected physically under the Bi2Te3-like five-layer block has been revealed on the Pb-based topological insulator (TI) PbBi4Te7 by bulk sensitive angle-resolved photoelectron spectroscopy (ARPES). Furthermore, conservation of the spin polarization of the hidden topological surface states is directly confirmed by bulk-sensitive spin ARPES observation. This finding paves the way to realize the real spintronics devices by TIs that are operable in the real environment.

4.
Phys Rev Lett ; 109(11): 116403, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005655

RESUMO

BiTeI has a layered and noncentrosymmetric structure where strong spin-orbit interaction leads to a giant Rashba spin splitting in the bulk bands. We present direct measurements of the bulk band structure obtained with soft x-ray angle-resolved photoemission (ARPES), revealing the three-dimensional Fermi surface. The observed spindle torus shape bears the potential for a topological transition in the bulk by hole doping. Moreover, the bulk electronic structure is clearly disentangled from the two-dimensional surface electronic structure by means of high-resolution and spin-resolved ARPES measurements in the ultraviolet regime. All findings are supported by ab initio calculations.

5.
Nat Commun ; 3: 635, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22273673

RESUMO

A topological insulator is a state of quantum matter that, while being an insulator in the bulk, hosts topologically protected electronic states at the surface. These states open the opportunity to realize a number of new applications in spintronics and quantum computing. To take advantage of their peculiar properties, topological insulators should be tuned in such a way that ideal and isolated Dirac cones are located within the topological transport regime without any scattering channels. Here we report ab-initio calculations, spin-resolved photoemission and scanning tunnelling microscopy experiments that demonstrate that the conducting states can effectively tuned within the concept of a homologous series that is formed by the binary chalcogenides (Bi(2)Te(3), Bi(2)Se(3) and Sb(2)Te(3)), with the addition of a third element of the group IV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...