Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12585, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869156

RESUMO

Layered metal chalcogenide materials are exceptionally appealing in optoelectronic devices thanks to their extraordinary optical properties. Recently, their application as flexible and wearable photodetectors have received a lot of attention. Herein, broadband and high-performance paper-based PDs were established in a very facile and inexpensive method by rubbing molybdenum disulfide and titanium trisulfide crystals on papers. Transferred layers were characterized by SEM, EDX mapping, and Raman analyses, and their optoelectronic properties were evaluated in a wavelength range of 405-810 nm. Although the highest and lowest photoresponsivities were respectively measured for TiS3 (1.50 mA/W) and MoS2 (1.13 µA/W) PDs, the TiS3-MoS2 heterostructure not only had a significant photoresponsivity but also showed the highest on/off ratio (1.82) and fast response time (0.96 s) compared with two other PDs. This advantage is due to the band offset formation at the heterojunction, which efficiently separates the photogenerated electron-hole pairs within the heterostructure. Numerical simulation of the introduced PDs also confirmed the superiority of TiS3-MoS2 heterostructure over the other two PDs and exhibited a good agreement with the experimental results. Finally, MoS2 PD demonstrated very high flexibility under applied strain, but TiS3 based PDs suffered from its fragility and experience a remarkable drain current reduction at strain larger than ± 0.33%. However, at lower strains, all PDs displayed acceptable performances.

2.
Bioeng Transl Med ; 7(1): e10236, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079624

RESUMO

For most people, the first step in treatment is to take out the tumor (surgery), so precise and fast diagnosis of any sign of high-risk and neoplastic cells, especially in surgical cavity margins, is significant. The frozen pathology method is the conventional standard of intraoperative diagnosis, but the low number of slides prepared from non-fixed tissues prevents us from achieving a perfect diagnosis. Although many improvements in intraoperative margin detection were achieved, still real-time detection of neoplastic lesions is crucial to improving diagnostic quality. Functionalized carbon nanotubes grown on the electrode needles lively and selectively determine the H2O2 released from cancer/atypical cells through reverse Warburg effect and hypoxia assisted glycolysis pathways in a quantitative electrochemical manner. The study was carried out on cell lines, 57 in vivo mice models with breast cancer, and 258 fresh in vitro samples of breast cancer tumors. A real-time electrotechnical system, named cancer diagnostic probe (CDP) (US Patent Pub. No.: US 2018/02991 A1, US 2021/0007638 A1, and US 2021/0022650 A1 [publications], and US 10,786,188 B1 [granted]), has been developed to find pre-neoplastic/neoplastic cells in vivo in a quantitative electrochemical manner by tracing hypoxia glycolysis byproducts. Matched pathological evaluations with response peaks of CDP were found based on the presence of neoplasia (from atypia to invasive carcinoma) in live breast tissues. The ability of CDP to find neoplastic lesions in mice models in vivo and fresh breast tumors in vitro was verified with sensitivity and specificity of 95% and 97%, respectively. The system may help a surgeon assistant system for usage in the operating room after passing many trials and standard examinations in the future.

3.
Anal Chim Acta ; 938: 72-81, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27619088

RESUMO

One of the most interested molecular research in the field of cancer detection is the mechanism of drug effect on cancer cells. Translating molecular evidence into electrochemical profiles would open new opportunities in cancer research. In this manner, applying nanostructures with anomalous physical and chemical properties as well as biocompatibility would be a suitable choice for the cell based electrochemical sensing. Silicon based nanostructure are the most interested nanomaterials used in electrochemical biosensors because of their compatibility with electronic fabrication process and well engineering in size and electrical properties. Here we apply silicon nanograss (SiNG) probing electrodes produced by reactive ion etching (RIE) on silicon wafer to electrochemically diagnose the effect of anticancer drugs on breast tumor cells. Paclitaxel (PTX) and mebendazole (MBZ) drugs have been used as polymerizing and depolymerizing agents of microtubules. PTX would perturb the anodic/cathodic responses of the cell-covered biosensor by binding phosphate groups to deformed proteins due to extracellular signal-regulated kinase (ERK(1/2)) pathway. MBZ induces accumulation of Cytochrome C in cytoplasm. Reduction of the mentioned agents in cytosol would change the ionic state of the cells monitored by silicon nanograss working electrodes (SiNGWEs). By extending the contacts with cancer cells, SiNGWEs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Effects of MBZ and PTX drugs, (with the concentrations of 2 nM and 0.1 nM, respectively) on electrochemical activity of MCF-7 cells are successfully recorded which are corroborated by confocal and flow cytometry assays.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Eletrodos , Mebendazol/farmacologia , Nanotecnologia , Paclitaxel/farmacologia , Silício/química , Tubulina (Proteína)/efeitos dos fármacos , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...