Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142273, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750727

RESUMO

This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.


Assuntos
Biodegradação Ambiental , Radioisótopos de Césio , Poluentes Radioativos do Solo , Radioisótopos de Estrôncio , Radioisótopos de Estrôncio/metabolismo , Radioisótopos de Estrôncio/análise , Poluentes Radioativos do Solo/metabolismo , Poluentes Radioativos do Solo/análise , Radioisótopos de Césio/metabolismo , Radioisótopos de Césio/análise , Solo/química , Plantas/metabolismo , Estrôncio/metabolismo , Estrôncio/análise , Césio/metabolismo
2.
Nanoscale ; 16(9): 4484-4513, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38314867

RESUMO

The escalating global demand for food production has predominantly relied on the extensive application of conventional fertilizers (CFs). However, the increased use of CFs has raised concerns regarding environmental risks, including soil and water contamination, especially within cereal-based cropping systems. In response, the agricultural sector has witnessed the emergence of healthier alternatives by utilizing nanotechnology and nano-fertilizers (NFs). These innovative NFs harness the remarkable properties of nanoparticles, ranging in size from 1 to 100 nm, such as nanoclays and zeolites, to enhance nutrient utilization efficiency. Unlike their conventional counterparts, NFs offer many advantages, including variable solubility, consistent and effective performance, controlled release mechanisms, enhanced targeted activity, reduced eco-toxicity, and straightforward and safe delivery and disposal methods. By facilitating rapid and complete plant absorption, NFs effectively conserve nutrients that would otherwise go to waste, mitigating potential environmental harm. Moreover, their superior formulations enable more efficient promotion of sustainable crop growth and production than conventional fertilizers. This review comprehensively examines the global utilization of NFs, emphasizing their immense potential in maintaining environmentally friendly crop output while ensuring agricultural sustainability.


Assuntos
Fertilizantes , Nanopartículas , Fertilizantes/análise , Agricultura/métodos , Solo , Nanotecnologia
3.
Nanoscale ; 16(9): 4920, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38376949

RESUMO

Correction for 'Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis' by Badr-Eddine Channab et al., Nanoscale, 2024, https://doi.org/10.1039/d3nr05012b.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...