Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e20932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37885712

RESUMO

Scientific backgrounds: Development of nanostructured biodegradable alloys has generated a great deal of interest in the recent years as they offer promising bioactive materials for reconstruction of bony defects following traumatic fractures or surgical excision of tumors. Objectives: The aim of the current study was to investigate the biocompatibility of Iron-Manganese -based alloys (Fe-Mn) with addition of copper (Cu), Tungsten (W) and cobalt (Co) to obtain 3 different alloys namely, Fe-Mn-Cu, Fe-Mn-W, and Fe-Mn-Co on normal oral epithelial cell line,and their possible anticancer effect on MG-63: osteosarcoma cell line. Materials and methods: The sulforhodamine B (SRB) assay was used to assess cell viability percentage of both cell lines after exposure to discs of the proposed experimental alloys. Moreover, the antibacterial effect of such alloys against Escherichia coli (E. coli) was tested using disc diffusion susceptibility (Kirby-Bauer method) and colony suspension method. Results: The cell viability percentage of oral epithelial cell line showed a significant increase in all the experimental groups in comparison to the control group. The highest percentage was observed in Fe-Mn-Co group, followed by Fe-Mn-W then Fe-Mn-Cu, at 24 and 72-h intervals, respectively. While the cell viability percentage of osteosarcoma cell line showed significant increase in all the experimental groups at 24-h intervals, it showed a significant drop in all the study groups at 72-h intervals. The lowest percentage was observed in Fe-Mn-Cu group, followed by Fe-Mn-W then Fe-Mn-Co. Moreover, all the examined study groups didn't show any inhibition zones against E. coli reference culture. Conclusions: The novel nanostructured biodegradable Fe-Mn-Cu, Fe-Mn-W, and Fe-Mn-Co metal alloys exhibit good biocompatibility on oral epithelial cell lines with the enhancement of cell proliferation in a time-dependent manner that favors bone regeneration. On the other hand, all the alloys manifested possible anticancer activity against MG-63: osteosarcoma cell line. Furthermore, our study sheds the light on the importance of Co, W and Cu as promising alloying elements. However, the antibacterial activity of the examined alloys is still questionable. Clinical relevance: The novel nanostructured biodegradable Fe-Mn-Cu, Fe-Mn-W, and Fe-Mn-Co metal alloys offer promising bioactive materials for reconstruction of bony defects following traumatic fractures or surgical excision of tumors, In addition, they could be excellent alternatives for undegradable or non-resorbable alloys that are commonly used. Moreover, they could be used as beneficial 3D printing materials to obtain patient-specific medical implants that favor bone regeneration in addition to manufacturing of plates and screws suitable for fracture fixation.

2.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241302

RESUMO

This work aims to study the influence of Al2O3 in CrFeCuMnNi high-entropy alloy matrix composites (HEMCs) on their microstructure, phase changes, and mechanical and wear performances. CrFeCuMnNi-Al2O3 HEMCs were synthesized via mechanical alloying (MA) followed by hot compaction (550 °C at 550 MPa), medium frequency sintering (1200 °C), and hot forging (1000 °C at 50 MPa). The XRD results demonstrate the formation of both FCC and BCC phases in the synthesized powders, which were transformed into major stable FCC and minor ordered B2-BCC phases, as confirmed by HRSEM. The microstructural variation of HRSEM-EBSD, in terms of the coloured grain map (inverse pole figures), grain size distribution, and misorientation angle, was analysed and reported. The grain size of the matrix decreased with the increase in Al2O3 particles owing to the higher structural refinement by MA and zener pinning of the incorporated Al2O3 particles. The hot-forged CrFeCuMnNi-3 vol.% Al2O3 sample exhibited an ultimate compressive strength of 1.058 GPa, which was 21% higher than that of the unreinforced HEA matrix. Both the mechanical and wear performance of the bulk samples increased with an increase in Al2O3 content due to solid solution formation, high configurational mixing entropy, structural refinement, and the effective dispersion of the incorporated Al2O3 particles. The wear rate and coefficient of friction values decreased with the increase in Al2O3 content, indicating an improvement in wear resistance owing to the lower domination of abrasive and adhesive mechanisms, as evidenced by the SEM worn surface morphology.

3.
Materials (Basel) ; 16(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37049185

RESUMO

In this study, AA5083-WC composites were developed by ball milling followed by hot consolidation. The microstructures of the developed composites were investigated using XRD, SEM, EDX, and EBSD. The developed composites exhibited a homogeneous dispersion of WC particulates in the AA5083 matrix without any interactions at the matrix/reinforcement interface. The results confirmed the development of a refined equiaxed grain structure of AA5083-WC composites where the EBSD results revealed an average grain size of 4.38 µm and 3.32 µm for AA5083-6%WC (AW-6) and AA5083-12%WC (AW-12) composites, respectively. The results showed that incorporating WC particulates in the AA5083 alloy matrix significantly improved the compressive stress-strain behaviour and considerably enhanced the resistance to wear and friction. The AA5083-12%WC (AW-12) composite displayed the maximum strength and the highest resistance to wear and friction, whereas the as-milled AA5083 alloy (AW-0) exhibited the lowest strength and the least resistance to wear and friction. The AA5083-12%WC (AW-12) composite exhibited the optimum mechanical and tribological behaviour of the developed composites, making it a promising candidate for tribological applications.

4.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837290

RESUMO

In this study, corrosion-resistant AA5083-BN/WC composites were developed for tribological applications through adequate control of the reinforcement content (WC and BN) in the matrix (AA5083 alloy). The effects of 6% and 12% tungsten carbide (WC) as well as 6% and 12% boron nitride (BN) additions on the corrosion behavior of AA5083 aluminum composite in 3.5% NaCl solution were carried out. Electrochemical techniques such as cyclic potentiodynamic polarization (CPP), changes in the chronoamperometric current with time (CCT), and electrochemical impedance spectroscopy (EIS) were utilized. The polarization results showed that the addition of 6% WC to the AA5083 alloy matrix improved its resistance to corrosion (RP). Rp exhibited an additional increase by adding 12% WC to the matrix. The values of RP were observed to increase for the AA5083 composite when adding 6% BN, and the highest RP values were recorded for the composite that contains 12% BN. The results obtained by the CPP method were confirmed by CCT and EIS measurements, where the presence of WC and BN protected the developed AA5083- BN/WC composites against corrosion. The corrosion resistance revealed an additional improvement with an increase in WC and BN content from 6% to 12%. The results also confirm that pitting corrosion decreased in the presence of WC and BN in the fabricated composites.

5.
Materials (Basel) ; 14(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200057

RESUMO

In this research work, the nanostructured Fe-Mn (BM0), Fe-Mn-Cu (BM1), Fe-Mn-W (BM2), and Fe-Mn-Co (BM3) biodegradable alloys were successfully synthesized using mechanical alloying. The microstructure of the synthesized alloys was examined using XRD, SEM equipped with EDS, and HRTEM techniques. The results obtained based on these techniques confirmed the development of nanostructured BM0, BM1, BM2, and BM3 alloys and homogenous solid solutions with an even elemental dispersion. The compressibility of the synthesized alloys was investigated experimentally and empirically in the as-milled conditions and after applying a stress relief treatment (150 °C for 1 h). The load applied for compaction experiments ranged from 25-1100 MPa with a rate of 1 mm/min. According to the experimentation performed in the current study, the relative density of the as-milled BM0, BM1, BM2, and BM3 alloys was 72.90% and 71.64%, 72.32%, and 72.03%, respectively. After applying the stress relief treatment, the density was observed to increase to 75.23%, 77.10%, 72.65%, and 72.86% for BM0-S, BM1-S, BM2-S and BM3-S samples, respectively. A number of compaction models were tested to identify the optimum models for predicting the compressibility behavior of nanostructured Fe-Mn, Fe-Mn-Cu, Fe-Mn-W, and Fe-Mn-Co alloys in the as-milled and stress-relieved conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...