Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 43(2): 101-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21186351

RESUMO

We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.


Assuntos
Cacau/genética , Genoma de Planta , Núcleo Celular/genética , DNA/genética , Elementos de DNA Transponíveis , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Homozigoto , Hibridização In Situ , Modelos Genéticos , Locos de Características Quantitativas
2.
BMC Genomics ; 7: 199, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16895597

RESUMO

BACKGROUND: With the completion of the genome sequence for rice (Oryza sativa L.), the focus of rice genomics research has shifted to the comparison of the rice genome with genomes of other species for gene cloning, breeding, and evolutionary studies. The genus Oryza includes 23 species that shared a common ancestor 8-10 million years ago making this an ideal model for investigations into the processes underlying domestication, as many of the Oryza species are still undergoing domestication. This study integrates high-throughput, hybridization-based markers with BAC end sequence and fingerprint data to construct physical maps of rice chromosome 1 orthologues in two wild Oryza species. Similar studies were undertaken in Sorghum bicolor, a species which diverged from cultivated rice 40-50 million years ago. RESULTS: Overgo markers, in conjunction with fingerprint and BAC end sequence data, were used to build sequence-ready BAC contigs for two wild Oryza species. The markers drove contig merges to construct physical maps syntenic to rice chromosome 1 in the wild species and provided evidence for at least one rearrangement on chromosome 1 of the O. sativa versus Oryza officinalis comparative map. When rice overgos were aligned to available S. bicolor sequence, 29% of the overgos aligned with three or fewer mismatches; of these, 41% gave positive hybridization signals. Overgo hybridization patterns supported colinearity of loci in regions of sorghum chromosome 3 and rice chromosome 1 and suggested that a possible genomic inversion occurred in this syntenic region in one of the two genomes after the divergence of S. bicolor and O. sativa. CONCLUSION: The results of this study emphasize the importance of identifying conserved sequences in the reference sequence when designing overgo probes in order for those probes to hybridize successfully in distantly related species. As interspecific markers, overgos can be used successfully to construct physical maps in species which diverged less than 8 million years ago, and can be used in a more limited fashion to examine colinearity among species which diverged as much as 40 million years ago. Additionally, overgos are able to provide evidence of genomic rearrangements in comparative physical mapping studies.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Sondas de DNA , Marcadores Genéticos , Genoma de Planta , Hibridização de Ácido Nucleico , Oryza/genética , Sorghum/genética , Cromossomos Artificiais Bacterianos/genética , Impressões Digitais de DNA , Evolução Molecular , Biblioteca Gênica , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
3.
Genome Res ; 15(9): 1284-91, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16109971

RESUMO

Rice (Oryza sativa L.) chromosome 3 is evolutionarily conserved across the cultivated cereals and shares large blocks of synteny with maize and sorghum, which diverged from rice more than 50 million years ago. To begin to completely understand this chromosome, we sequenced, finished, and annotated 36.1 Mb ( approximately 97%) from O. sativa subsp. japonica cv Nipponbare. Annotation features of the chromosome include 5915 genes, of which 913 are related to transposable elements. A putative function could be assigned to 3064 genes, with another 757 genes annotated as expressed, leaving 2094 that encode hypothetical proteins. Similarity searches against the proteome of Arabidopsis thaliana revealed putative homologs for 67% of the chromosome 3 proteins. Further searches of a nonredundant amino acid database, the Pfam domain database, plant Expressed Sequence Tags, and genomic assemblies from sorghum and maize revealed only 853 nontransposable element related proteins from chromosome 3 that lacked similarity to other known sequences. Interestingly, 426 of these have a paralog within the rice genome. A comparative physical map of the wild progenitor species, Oryza nivara, with japonica chromosome 3 revealed a high degree of sequence identity and synteny between these two species, which diverged approximately 10,000 years ago. Although no major rearrangements were detected, the deduced size of the O. nivara chromosome 3 was 21% smaller than that of japonica. Synteny between rice and other cereals using an integrated maize physical map and wheat genetic map was strikingly high, further supporting the use of rice and, in particular, chromosome 3, as a model for comparative studies among the cereals.


Assuntos
Cromossomos de Plantas/genética , Oryza/genética , Poaceae/genética , Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Genes de Plantas , Repetições Minissatélites , Dados de Sequência Molecular , Oryza/classificação , Mapeamento Físico do Cromossomo , Poaceae/classificação , Proteoma , Especificidade da Espécie , Zea mays/classificação , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...