Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 22233, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564427

RESUMO

To reduce the transmission risk of bovine spongiform encephalopathy prions (PrPBSE), specified risk materials (SRM) that can harbour PrPBSE are prevented from entering the feed and food chains. As composting is one approach to disposing of SRM, we investigated the inactivation of PrPBSE in lab-scale composters over 28 days and in bin composters over 106-120 days. Lab-scale composting was conducted using 45 kg of feedlot manure with and without chicken feathers. Based on protein misfolding cyclic amplification (PMCA), after 28 days of composting, PrPBSE seeding activity was reduced by 3-4 log10 with feathers and 3 log10 without. Bin composters were constructed using ~ 2200 kg feedlot manure and repeated in 2017 and 2018. PMCA results showed that seeding activity of PrPBSE was reduced by 1-2 log10 in the centre, but only by 1 log10 in the bottom of bin composters. Subsequent assessment by transgenic (Tgbov XV) mouse bioassay confirmed a similar reduction in PrPBSE infectivity. Enrichment for proteolytic microorganisms through the addition of feathers to compost could enhance PrPBSE degradation. In addition to temperature, other factors including varying concentrations of PrPBSE and the nature of proteolytic microbial populations may be responsible for differential degradation of PrPBSE during composting.


Assuntos
Compostagem , Encefalopatia Espongiforme Bovina , Príons , Camundongos , Animais , Bovinos , Príons/metabolismo , Encefalopatia Espongiforme Bovina/metabolismo , Esterco , Animais Geneticamente Modificados , Camundongos Transgênicos , Encéfalo/metabolismo
2.
PeerJ ; 9: e10586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628630

RESUMO

Campylobacter fetus is currently classified into three main subspecies, but only two of these, C. fetus subspecies fetus and C. fetus subsp. venerealis originate principally from ruminants where they inhabit different niches and cause distinct pathogenicity. Their importance as pathogens in international trade and reporting is also different yet the criteria defining these properties have never been fully substantiated nor understood. The situation is further compromised because the ability to differentiate between these two closely related C. fetus subspecies has traditionally been performed by phenotypic characterisation of isolates, methods which are limited in scope, time-consuming, tedious, and often yield inconsistent results, thereby leading to isolate misidentification. The development of robust genetic markers that could enable rapid discrimination between C. fetus subsp. fetus and subsp. venerealis has also been challenging due to limited differences in the gene complement of their genomes, high levels of sequence repetition, the small number of closed genome sequences available and the lack of standardisation of the discriminatory biochemical tests employed for comparative purposes. To yield a better understanding of the genomic differences that define these C. fetus strains, seven isolates were exhaustively characterised phenotypically and genetically and compared with seven previously well characterised isolates. Analysis of these 14 C. fetus samples clearly illustrated that adaption by C. fetus subsp. venerealis to the bovine reproductive tract correlated with increasing genome length and plasticity due to the acquisition and propagation of several mobile elements including prophages, transposons and plasmids harbouring virulence factors. Significant differences in the repertoire of the CRISPR (clustered regularly interspersed short palindromic repeats)-cas system of all C. fetus strains was also found. We therefore suggest that a deficiency in this adaptive immune system may have permitted the emergence of extensive genome plasticity and led to changes in host tropism through gene disruption and/or changes in gene expression. Notable differences in the sub-species complement of DNA adenine methylase genes may also have an impact. These data will facilitate future studies to better understand the precise genetic differences that underlie the phenotypic and virulence differences between these animal pathogens and may identify additional markers useful for diagnosis and sub-typing.

3.
Appl Biosaf ; 26(1): 6-13, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36033960

RESUMO

Introduction: Bacillus anthracis, the etiological agent of anthrax, produces long-lived spores, which are resistant to heat, cold, pH, desiccation, and chemical agents. The spores maintain their ability to produce viable bacteria even after decades, and when inhaled can cause fatal disease in over half of the clinical cases. Owing to these characteristics, anthrax has been repeatedly selected for both bioweapon and bioterrorism use. In the event of a bioterrorism attack, surfaces in the vicinity of the attack will be contaminated, and recovering from such an event requires rapid and effective decontamination. Previous decontamination method development has focused mainly on temperatures >0°C, and have shown poor efficacy at subzero temperatures. Methods: In this study, we demonstrate the use of calcium chloride (CaCl2) as a freezing point depression agent for pH-adjusted sodium hypochlorite (NaOCl) for the effective and rapid decontamination of B. anthracis Sterne strain spores at subzero temperatures. Results: We show the complete decontamination of 106 B. anthracis Sterne strain spores at temperatures as low as -20°C within 2.5 min by submersion in solution containing 25% (w/v) CaCl2, 0.50% NaOCl, and 0.40% (v/v) acetic acid. We also demonstrate significant reduction in number of spores at -28°C. Conclusions: The results show promise for rapidly decontaminating equipment and materials used in the response to bioterrorism events using readily available consumer chemicals. Future study should examine the efficacy of these results on complex surfaces.

5.
Front Vet Sci ; 7: 208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426381

RESUMO

Rapid and accurate diagnosis of bovine respiratory disease (BRD) presents a substantial challenge to the North American cattle industry. Here we utilize recombinase polymerase amplification (RPA), a fast and sensitive isothermal DNA-based technology for the detection of four BRD pathogens (Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Mycoplasma bovis), genes coding antimicrobial resistance (AMR) and integrative conjugative elements (ICE) which can harbor AMR genes. Eleven RPA assays were designed and validated including: a) one conventional species-specific multiplex assay targeting the 4 BRD pathogens, b) two species-specific real-time multiplex RPA assays targeting M. haemolytica/M. bovis and P. multocida/H. somni, respectively with a novel competitive internal amplification control, c) seven conventional assays targeting AMR genes (tetH, tetR, msrE, mphE, sul2, floR, erm42), and d) one real-time assay targeting ICE. Each real-time RPA assay was tested on 100 deep nasopharyngeal swabs (DNPS) collected from feedlot cattle previously assessed for targets using either culture methods and/or polymerase chain reaction (PCR) verification (TC-PCR). The developed RPA assays enabled sensitive and accurate identification of BRD agents and AMR/ICE genes directly from DNPS, in a shorter period than TC-PCR, showing considerable promise as a tool for point-of-care identification of BRD pathogens and antimicrobial resistance genes.

6.
Microorganisms ; 8(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235751

RESUMO

Antimicrobial resistance (AMR) has important implications for the continued use of antibiotics to control infectious diseases in both beef cattle and humans. AMR along the One Health continuum of the beef production system is largely unknown. Here, whole genomes of presumptive extended-spectrum ß-lactamase E. coli (ESBL-EC) from cattle feces (n = 40), feedlot catch basins (n = 42), surrounding streams (n = 21), a beef processing plant (n = 4), municipal sewage (n = 30), and clinical patients (n = 25) are described. ESBL-EC were isolated from ceftriaxone selective plates and subcultured on ampicillin selective plates. Agreement of genotype-phenotype prediction of AMR ranged from 93.2% for ampicillin to 100% for neomycin, trimethoprim/sulfamethoxazole, and enrofloxacin resistance. Overall, ß-lactam (100%; blaEC, blaTEM-1, blaSHV, blaOXA, blaCTX-M-), tetracycline (90.1%; tet(A), tet(B)) and folate synthesis (sul2) antimicrobial resistance genes (ARGs) were most prevalent. The ARGs tet(C), tet(M), tet(32), blaCTX-M-1, blaCTX-M-14, blaOXA-1, dfrA18, dfrA19, catB3, and catB4 were exclusive to human sources, while blaTEM-150, blaSHV-11-12, dfrA12, cmlA1, and cmlA5 were exclusive to beef cattle sources. Frequently encountered virulence factors across all sources included adhesion and type II and III secretion systems, while IncFIB(AP001918) and IncFII plasmids were also common. Specificity and prevalence of ARGs between cattle-sourced and human-sourced presumptive ESBL-EC likely reflect differences in antimicrobial use in cattle and humans. Comparative genomics revealed phylogenetically distinct clusters for isolates from human vs. cattle sources, implying that human infections caused by ESBL-EC in this region might not originate from beef production sources.

7.
Sci Rep ; 10(1): 3937, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127598

RESUMO

For a One-Health investigation of antimicrobial resistance (AMR) in Enterococcus spp., isolates from humans and beef cattle along with abattoirs, manured fields, natural streams, and wastewater from both urban and cattle feedlot sources were collected over two years. Species identification of Enterococcus revealed distinct associations across the continuum. Of the 8430 isolates collected, Enterococcus faecium and Enterococcus faecalis were the main species in urban wastewater (90%) and clinical human isolates (99%); Enterococcus hirae predominated in cattle (92%) and feedlot catch-basins (60%), whereas natural streams harbored environmental Enterococcus spp. Whole-genome sequencing of E. faecalis (n = 366 isolates) and E. faecium (n = 342 isolates), revealed source clustering of isolates, indicative of distinct adaptation to their respective environments. Phenotypic resistance to tetracyclines and macrolides encoded by tet(M) and erm(B) respectively, was prevalent among Enterococcus spp. regardless of source. For E. faecium from cattle, resistance to ß-lactams and quinolones was observed among 3% and 8% of isolates respectively, compared to 76% and 70% of human clinical isolates. Clinical vancomycin-resistant E. faecium exhibited high rates of multi-drug resistance, with resistance to all ß-lactam, macrolides, and quinolones tested. Differences in the AMR profiles among isolates reflected antimicrobial use practices in each sector of the One-Health continuum.


Assuntos
Antibacterianos/farmacologia , Enterococcus/patogenicidade , Farmacorresistência Bacteriana/genética , Enterococcus/efeitos dos fármacos , Enterococcus/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/patogenicidade , Humanos , Macrolídeos/farmacologia , Filogenia , Quinolonas/farmacologia , Tetraciclinas/farmacologia , Virulência , Sequenciamento Completo do Genoma , Resistência beta-Lactâmica/genética
8.
BMC Microbiol ; 20(1): 20, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980014

RESUMO

BACKGROUND: Wastewater treatment plants (WWTPs) are considered hotspots for the environmental dissemination of antimicrobial resistance (AMR) determinants. Vancomycin-Resistant Enterococcus (VRE) are candidates for gauging the degree of AMR bacteria in wastewater. Enterococcus faecalis and Enterococcus faecium are recognized indicators of fecal contamination in water. Comparative genomics of enterococci isolated from conventional activated sludge (CAS) and biological aerated filter (BAF) WWTPs was conducted. RESULTS: VRE isolates, including E. faecalis (n = 24), E. faecium (n = 11), E. casseliflavus (n = 2) and E. gallinarum (n = 2) were selected for sequencing based on WWTP source, species and AMR phenotype. The pangenomes of E. faecium and E. faecalis were both open. The genomic fraction related to the mobilome was positively correlated with genome size in E. faecium (p < 0.001) and E. faecalis (p < 0.001) and with the number of AMR genes in E. faecium (p = 0.005). Genes conferring vancomycin resistance, including vanA and vanM (E. faecium), vanG (E. faecalis), and vanC (E. casseliflavus/E. gallinarum), were detected in 20 genomes. The most prominent functional AMR genes were efflux pumps and transporters. A minimum of 16, 6, 5 and 3 virulence genes were detected in E. faecium, E. faecalis, E. casseliflavus and E. gallinarum, respectively. Virulence genes were more common in E. faecalis and E. faecium, than E. casseliflavus and E. gallinarum. A number of mobile genetic elements were shared among species. Functional CRISPR/Cas arrays were detected in 13 E. faecalis genomes, with all but one also containing a prophage. The lack of a functional CRISPR/Cas arrays was associated with multi-drug resistance in E. faecium. Phylogenetic analysis demonstrated differential clustering of isolates based on original source but not WWTP. Genes related to phage and CRISPR/Cas arrays could potentially serve as environmental biomarkers. CONCLUSIONS: There was no discernible difference between enterococcal genomes from the CAS and BAF WWTPs. E. faecalis and E. faecium have smaller genomes and harbor more virulence, AMR, and mobile genetic elements than other Enterococcus spp.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Enterococcus faecium/genética , Genômica/métodos , Águas Residuárias/microbiologia , Tamanho do Genoma , Sequências Repetitivas Dispersas , Tipagem de Sequências Multilocus , Filogenia , Resistência a Vancomicina , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
9.
Sci Total Environ ; 637-638: 657-664, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29758422

RESUMO

Livestock wastewater lagoons represent important environmental reservoirs of antibiotic resistance genes (ARGs), although factors contributing to their proliferation within these reservoirs remain poorly understood. Here, we characterized Escherichia coli from feedlot cattle feces and associated wastewater lagoons using CRISPR1 subtyping, and demonstrated that while generic E. coli were genetically diverse, populations were dominated by several 'feedlot-adapted' CRISPR types (CTs) that were widely distributed throughout the feedlot. Moreover, E. coli bearing beta-lactamase genes, which confer reduced susceptibility to third-generation cephalosporin's, predominantly belonged to these feedlot-adapted CTs. Remarkably, the genomic region containing the CRISPR1 allele was more frequently subject to genetic exchange among wastewater isolates compared to fecal isolates, implicating this region in environmental adaptation. This allele is proximal to the mutS-rpoS-nlpD region, which is involved in regulating recombination barriers and adaptive stress responses. There were no loss-of-function mutS or rpoS mutations or beneficial accessory genes present within the mutS-rpoS-nlpD region that would account for increased environmental fitness among feedlot-adapted isolates. However, comparative sequence analysis revealed that protein sequences within this region were conserved among most feedlot-adapted CTs, but not transient fecal CTs, and did not reflect phylogenetic relatedness, implying that adaptation to wastewater environments may be associated with genetic variation related to stress resistance. Collectively, our findings suggest adaptation of E. coli to feedlot environments may contribute to propagation of ARGs in wastewater lagoons.


Assuntos
Doenças dos Bovinos/microbiologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/fisiologia , Animais , Antibacterianos , Bovinos , Fezes , Filogenia , Carne Vermelha
10.
Genome Announc ; 6(20)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773629

RESUMO

Using a combination of Illumina paired-end sequencing, Pacific Biosciences RS II sequencing, and OpGen Argus whole-genome optical mapping, we report here the first complete genome sequence of Yersinia massiliensis The completed genome consists of a 4.99-Mb chromosome, a 121-kb megaplasmid, and a 57-kb plasmid.

11.
Can J Microbiol ; 64(1): 75-86, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29088546

RESUMO

Serotyping of Salmonella enterica subsp. enterica is a critical step for foodborne salmonellosis investigation. To identify Salmonella enterica subsp. enterica serovars, we have developed a new assay based on a triplex polymerase chain reaction (PCR) with pyrosequencing for amplicon confirmation and phylogenetic discrimination of strains. The top 54 most prevalent serovars of S. enterica in Canada were examined with a total of 23 single-nucleotide polymorphisms (SNPs) and (or) single-nucleotide variations (SNVs) located on 3 genes (fliD, sopE2, and spaO). Seven of the most common serovars, Newport, Typhi, Javiana, Infantis, Thompson, Heidelberg, and Enteritidis, were successfully distinguished from the other serovars based on their unique SNP-SNV combinations. The remaining serovars, including Typhimurium, ssp I:4,[5],12:i:-, and Saintpaul, were further divided into 47 subgroups that demonstrate the relatedness to phylogenetic classifications of each serovar. This pyrosequencing assay is not only cost-effective, rapid, and user-friendly, but also provides phylogenetic information by analyzing 23 selected SNPs. With the added layer of confidence in the PCR results and the accuracy and speed of pyrosequencing, this novel method would benefit the food industry and provides a tool for rapid outbreak investigation through quick detection and identification of common S. enterica serovars in Canada.


Assuntos
Microbiologia de Alimentos/métodos , Salmonella enterica/classificação , Salmonella enterica/genética , Análise de Sequência de DNA , Sorotipagem , Canadá , Humanos , Filogenia , Reação em Cadeia da Polimerase , Infecções por Salmonella/microbiologia , Salmonella enterica/isolamento & purificação , Sorogrupo
12.
BMC Microbiol ; 17(1): 52, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28270110

RESUMO

BACKGROUND: Enterococcus is ubiquitous in nature and is a commensal of both the bovine and human gastrointestinal (GI) tract. It is also associated with clinical infections in humans. Subtherapeutic administration of antibiotics to cattle selects for antibiotic resistant enterococci in the bovine GI tract. Antibiotic resistance genes (ARGs) may be present in enterococci following antibiotic use in cattle. If located on mobile genetic elements (MGEs) their dissemination between Enterococcus species and to pathogenic bacteria may be promoted, reducing the efficacy of antibiotics. RESULTS: We present a comparative genomic analysis of twenty-one Enterococcus spp. isolated from bovine feces including Enterococcus hirae (n = 10), Enterococcus faecium (n = 3), Enterococcus villorum (n = 2), Enterococcus casseliflavus (n = 2), Enterococcus faecalis (n = 1), Enterococcus durans (n = 1), Enterococcus gallinarum (n = 1) and Enterococcus thailandicus (n = 1). The analysis revealed E. faecium and E. faecalis from bovine feces share features with human clinical isolates, including virulence factors. The Tn917 transposon conferring macrolide-lincosamide-streptogramin B resistance was identified in both E. faecium and E. hirae, suggesting dissemination of ARGs on MGEs may occur in the bovine GI tract. An E. faecium isolate was also identified with two integrative conjugative elements (ICEs) belonging to the Tn916 family of ICE, Tn916 and Tn5801, both conferring tetracycline resistance. CONCLUSIONS: This study confirms the presence of enterococci in the bovine GI tract possessing ARGs on MGEs, but the predominant species in cattle, E. hirae is not commonly associated with infections in humans. Analysis using additional complete genomes of E. faecium from the NCBI database demonstrated differential clustering of commensal and clinical isolates, suggesting that these strains may be specifically adapted to their respective environments.


Assuntos
Bovinos/microbiologia , Enterococcus/classificação , Enterococcus/genética , Enterococcus/isolamento & purificação , Fezes/microbiologia , Genoma Bacteriano/genética , Genômica , Animais , Antibacterianos/farmacologia , Bacteriófagos , Sistemas CRISPR-Cas , Doenças dos Bovinos/microbiologia , Análise por Conglomerados , Elementos de DNA Transponíveis/genética , DNA Bacteriano/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/patogenicidade , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/patogenicidade , Streptococcus faecium ATCC 9790/efeitos dos fármacos , Streptococcus faecium ATCC 9790/genética , Streptococcus faecium ATCC 9790/isolamento & purificação , Streptococcus faecium ATCC 9790/patogenicidade , Microbioma Gastrointestinal , Humanos , Sequências Repetitivas Dispersas/genética , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus/métodos , Filogenia , Polimorfismo de Nucleotídeo Único , Estreptogramina B/farmacologia , Resistência a Tetraciclina/genética , Fatores de Virulência/genética
13.
Genome Announc ; 5(6)2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28183752

RESUMO

Salmonella enterica serovar Typhimurium strains 22495 and 22792, obtained from wild birds, were found to display different virulence attributes in an experimental chicken model. Closed genome sequences were assembled after sequencing with the Roche 454 and Illumina MiSeq platforms. An additional plasmid was present in the more virulent strain 22495.

14.
Foodborne Pathog Dis ; 14(1): 35-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27854514

RESUMO

Clinical outcomes of Shiga toxin (stx)-producing Escherichia coli infection are largely determined by virulence gene subtypes. This study used a polymerase chain reaction (PCR)-pyrosequencing assay to analyze single-nucleotide polymorphisms for subtyping three major virulence genes (stx1, stx2, eae) of pathogenic E. coli (O157, O26, O111, and O103) isolated from cattle over a 2-year interval (n = 465) and human clinical cases (n = 42) in western Canada. Most bovine isolates were PCR positive for at least one target virulence gene (367/465), whereas 100% of human isolates harbored eae in combination with at least one stx gene. Four Shiga toxin (1a, 2a, 2c, and 2e) and four eae (λ/γ1-eae, ɛ-eae, θ/γ2-eae, and ß-eae) subtypes were identified in over 25 distinct virulence genotypes. Among cattle isolates, every serogroup, but O103, presented a dominant genotype (O157: stx1a+stx2a+λ/γ1-eae, O26: ß-eae alone, and O111: stx1a+θ/γ2-eae). Similar patterns were found in human isolates, although it was not possible to establish a clear genotypic association between the two sources. Many O157 and non-O157 cattle isolates lacked stx genes; the absence was greater in non-O157 (75/258) and O157:non-H7 (19/40) than in O157:H7 strains (1/164). In addition, there was a greater diversity of virulence genotypes of E. coli isolated from cattle than those of human diseases, which could be due to sample characteristics (e.g., source and clinical condition). However, the majority of cattle strains had virulence profiles identical to those of clinical cases. Consequently, determining the presence of certain stx (stx1a and stx2a) and eae (λ/γ1-eae) subtypes known to cause human disease would be a valuable tool for risk assessment and prediction of disease outcome along the farm-to-fork continuum.


Assuntos
Escherichia coli O157/genética , Fezes/microbiologia , Genes Bacterianos , Carne Vermelha/microbiologia , Escherichia coli Shiga Toxigênica/genética , Alberta , Animais , Carboidratos Epimerases/genética , Bovinos/microbiologia , Escherichia coli O157/isolamento & purificação , Contaminação de Alimentos , Microbiologia de Alimentos , Humanos , Polimorfismo de Nucleotídeo Único , Sorotipagem , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Transaminases/genética
15.
Methods Mol Biol ; 1492: 203-220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27822867

RESUMO

Bacterial identification and typing are fixtures of microbiology laboratories and are vital aspects of our response mechanisms in the event of foodborne outbreaks and bioterrorist events. Whole genome sequencing (WGS) is leading the way in terms of expanding our ability to identify and characterize bacteria through the identification of subtle differences between genomes (e.g. single nucleotide polymorphisms (SNPs) and insertions/deletions). Modern high-throughput technologies such as pyrosequencing can facilitate the typing of bacteria by generating short-read sequence data of informative regions identified by WGS analyses, at a fraction of the cost of WGS. Thus, pyrosequencing systems remain a valuable asset in the laboratory today. Presented in this chapter are two methods developed in the Amoako laboratory that detail the identification and genotyping of bacterial pathogens. The first targets canonical single nucleotide polymorphisms (canSNPs) of evolutionary importance in Bacillus anthracis, the causative agent of Anthrax. The second assay detects Shiga-toxin (stx) genes, which are associated with virulence in Escherichia coli and Shigella spp., and differentiates the subtypes of stx-1 and stx-2 based on SNP loci. These rapid methods provide end users with important information regarding virulence traits as well as the evolutionary and biogeographic origin of isolates.


Assuntos
Bactérias/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Bactérias/patogenicidade , Sequência de Bases , Evolução Molecular , Genes Bacterianos , Homologia de Sequência do Ácido Nucleico
16.
Genome Announc ; 4(4)2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27445365

RESUMO

Here, we report the first draft genome sequence of Enterococcus thailandicus isolated from the feces of feedlot cattle in Southern Alberta.

17.
Front Microbiol ; 7: 806, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303388

RESUMO

Anthrax outbreaks in livestock have social, economic and health implications, altering farmer's livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g(-1)) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P < 0.05) viability of 2.7 and 2.6 log10 CFU g(-1) respectively, as compared to a 0.6 log10 CFU g(-1) reduction for those generated at 37°C. For B. anthracis, sporulation temperature did not impact spore survival as there was a 2.5, 2.2, and 2.8 log10 CFU g(-1) reduction after composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P < 0.05) in the first as compared to the second composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures.

18.
J Food Prot ; 79(12): 2078-2085, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28221953

RESUMO

The determination of Shiga toxin (ST) subtypes can be an important element in the risk characterization of foodborne ST-producing Escherichia coli (STEC) isolates for making risk management decisions. ST subtyping methods include PCR techniques based on electrophoretic or pyrosequencing analysis of amplicons and in silico techniques based on whole genome sequence analysis using algorithms that can be readily incorporated into bioinformatics analysis pipelines for characterization of isolates by their genetic composition. The choice of technique will depend on the performance characteristics of the method and an individual laboratory's access to specialized equipment or personnel. We developed two whole genome sequence-based ST subtyping tools: (i) an in silico PCR algorithm requiring genome assembly to replicate a reference PCR-based method developed by the Statens Serum Institut (SSI) and (ii) an assembly-independent routine in which raw sequencing results are mapped to a database of known ST subtype sequence variants (V-Typer). These tools were evaluated alongside the SSI reference PCR method and a recently described PCR-based pyrosequencing technique. The V-Typer method results corresponded closely with the reference method in the analysis of 67 STEC cultures obtained from a World Health Organization National Reference Laboratory. In contrast, the in silico PCR method failed to detect ST subtypes in several cases, a result which we attribute to assembly-induced errors typically encountered with repetitive gene sequences. The V-Typer can be readily integrated into bioinformatics protocols used in the identification and characterization of foodborne STEC isolates.


Assuntos
Infecções por Escherichia coli/diagnóstico , Toxina Shiga/genética , Proteínas de Escherichia coli/genética , Genômica , Humanos , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação
19.
Methods Mol Biol ; 1315: 363-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26103911

RESUMO

The perpetration of a bioterrorism attack poses a significant risk for public health with potential socioeconomic consequences. It is imperative that we possess reliable assays for the rapid and accurate identification of biothreat agents to make rapid risk-informed decisions on emergency response. The development of advanced methodologies for the detection of biothreat agents has been evolving rapidly since the release of the anthrax spores in the mail in 2001, and recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence-based approaches such as Pyrosequencing(®), which has the capability to determine short DNA stretches in real time using biotinylated PCR amplicons, have potential biodefense applications. Using markers from the virulence plasmids and chromosomal regions, my laboratory has demonstrated the power of this technology in the rapid, specific, and sensitive detection of B. anthracis spores and Yersinia pestis in food. These are the first applications for the detection of the two organisms in food. Furthermore, my lab has developed a rapid assay to characterize the antimicrobial resistance (AMR) gene profiles for Y. pestis using Pyrosequencing. Pyrosequencing is completed in about 60 min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence, thus enabling rapid risk-informed decisions to be made. A typical run yields 40-84 bp reads with 94-100 % identity to the expected sequence. It also provides a rapid method for determining the AMR profile as compared to the conventional plate method which takes several days. The method described is proposed as a novel detection system for potential application in food biodefense.


Assuntos
Bioterrorismo/prevenção & controle , Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos , Análise de Sequência de DNA/métodos , Bacillus anthracis/genética , Bacillus anthracis/isolamento & purificação , Sequência de Bases , Primers do DNA/genética , Genômica , Reação em Cadeia da Polimerase , Yersinia pestis/genética , Yersinia pestis/isolamento & purificação
20.
J Food Prot ; 78(2): 355-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25710151

RESUMO

Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.


Assuntos
Bacillus anthracis/isolamento & purificação , Bebidas/microbiologia , Microbiologia de Alimentos/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Sequência de DNA/métodos , Animais , Bacillus anthracis/genética , Bioterrorismo , Primers do DNA , DNA Bacteriano/isolamento & purificação , Água Potável/microbiologia , Separação Imunomagnética , Leite/microbiologia , Esporos Bacterianos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...