Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338762

RESUMO

Serotonin or 5-hydroxytryptamine (5-HT) is a ubiquitous neuro-modulator-transmitter that acts in the central nervous system, playing a major role in the control of breathing and other physiological functions. The midbrain, pons, and medulla regions contain several serotonergic nuclei with distinct physiological roles, including regulating the hypercapnic ventilatory response, upper airway patency, and sleep-wake states. Obesity is a major risk factor in the development of sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA), recurrent closure of the upper airway during sleep, and obesity hypoventilation syndrome (OHS), a condition characterized by daytime hypercapnia and hypoventilation during sleep. Approximately 936 million adults have OSA, and 32 million have OHS worldwide. 5-HT acts on 5-HT receptor subtypes that modulate neural control of breathing and upper airway patency. This article reviews the role of 5-HT in SDB and the current advances in 5-HT-targeted treatments for SDB.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Serotonina , Síndromes da Apneia do Sono/complicações , Obesidade/complicações , Sono , Hipercapnia
2.
J Appl Physiol (1985) ; 136(2): 233-243, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126089

RESUMO

The carotid bodies (CBs) have been implicated in glucose abnormalities in obesity via elevation of activity of the sympathetic nervous system. Obesity-induced hypertension is mediated by insulin receptor (INSR) signaling and by leptin, which binds to the leptin receptor (LEPRb) in CB and activates transient receptor potential channel subfamily M member 7 (TRPM7). We hypothesize that in mice with diet-induced obesity, hyperglycemia, glucose intolerance, and insulin resistance will be attenuated by the CB denervation (carotid sinus nerve dissection, CSND) and by knockdown of Leprb, Trpm7, and Insr gene expression in CB. In series of experiments in 75 male diet-induced obese (DIO) mice, we performed either CSND (vs. sham) surgeries or shRNA-induced suppression of Leprb, Trpm7, or Insr gene expression in CB, followed by blood pressure telemetry, intraperitoneal glucose tolerance and insulin tolerance tests, and measurements of fasting plasma insulin, leptin, corticosterone, glucagon and free fatty acids (FFAs) levels, hepatic expression of gluconeogenesis enzymes phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G-6-Pase) mRNA and liver glycogen levels. CSND decreased blood pressure, fasting blood glucose levels and improved glucose tolerance without any effect on insulin resistance. CSND did not affect any hormone levels and gluconeogenesis enzymes, but increased liver glycogen level. Genetic knockdown of CB Leprb, Trpm7, and Insr had no effect on glucose metabolism. We conclude that CB contributes to hyperglycemia of obesity, probably by modulation of the glycogen-glucose equilibrium. Diabetogenic effects of obesity on CB in mice do not occur via activation of CB Leprb, Trpm7, and Insr.NEW & NOTEWORTHY This paper provides first evidence that carotid body denervation abolishes hypertension and improves fasting blood glucose levels and glucose tolerance in mice with diet-induced obesity. Furthermore, we have shown that this phenomenon is associated with increased liver glycogen content, whereas insulin sensitivity and enzymes of gluconeogenesis were not affected.


Assuntos
Corpo Carotídeo , Hiperglicemia , Hipertensão , Resistência à Insulina , Insulinas , Canais de Cátion TRPM , Masculino , Camundongos , Animais , Leptina , Glicemia/metabolismo , Corpo Carotídeo/metabolismo , Camundongos Obesos , Canais de Cátion TRPM/metabolismo , Glicogênio Hepático/metabolismo , Hiperglicemia/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Hipertensão/metabolismo , Denervação , Insulinas/metabolismo
3.
Cell Rep ; 42(12): 113512, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039129

RESUMO

Mismatch between CO2 production (Vco2) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPRb+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity. In diet-induced obese LeprbCre mice, chemogenetic activation of LEPRb+ DMH neurons increases minute ventilation (Ve) during sleep, the hypercapnic ventilatory response, Vco2, and Ve/Vco2, indicating that breathing is stimulated out of proportion to metabolism. The effects of chemogenetic activation are abolished by a serotonin blocker. Optogenetic stimulation of the LEPRb+ DMH neurons evokes excitatory postsynaptic currents in downstream serotonergic neurons of the dorsal raphe (DR). Administration of retrograde AAV harboring Cre-dependent caspase to the DR deletes LEPRb+ DMH neurons and abolishes metabolic and respiratory responses to leptin. These findings indicate that LEPRb+ DMH neurons match breathing to metabolism through serotonergic pathways to prevent obesity-induced hypoventilation.


Assuntos
Hipoventilação , Leptina , Camundongos , Animais , Leptina/metabolismo , Hipoventilação/metabolismo , Obesidade/metabolismo , Respiração , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo
4.
J Clin Sleep Med ; 19(5): 947-955, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727502

RESUMO

STUDY OBJECTIVES: The major goal of the study was to determine whether changes in tongue morphology under selective hypoglossal nerve therapy for obstructive sleep apnea were associated with alterations in airway patency during sleep when specific portions of the hypoglossal nerve were stimulated. METHODS: This case series was conducted at the Johns Hopkins Sleep Disorders Center at Johns Hopkins Bayview Medical Center. Twelve patients with apnea implanted with a multichannel targeted hypoglossal nerve-stimulating system underwent midsagittal ultrasound tongue imaging during wakefulness. Changes in tongue shape were characterized by measuring the vertical height and polar dimensions between tongue surface and genioglossi origin in the mandible. Changes in patency were characterized by comparing airflow responses between stimulated and adjacent unstimulated breaths during non-rapid eye movement sleep. RESULTS: Two distinct morphologic responses were observed. Anterior tongue base and hyoid-bone movement (5.4 [0.4] to 4.1 [1.0] cm (median and [interquartile range]) with concomitant increases in tongue height (5.0 [0.9] to 5.6 [0.7] cm) were associated with decreases in airflow during stimulation. In contrast, comparable anterior hyoid movement (tongue protrusion from 5.8 [0.5] to 4.5 [0.9] cm) without significant increases in height (5.2 [1.6] to 4.6 [0.8] cm) were associated with marked increases in airflow during sleep. CONCLUSIONS: Tongue protrusion with preservation of tongue shape predicted increases in patency, whereas anterior movement with concomitant increases in height were associated with decreased pharyngeal patency. These findings suggest that pharyngeal patency can be best stabilized by stimulating lingual muscles that maintain tongue shape while protruding the tongue, thereby preventing it from prolapsing posteriorly during sleep. CITATION: Fleury Curado T, Pham L, Otvos T, et al. Changes in tongue morphology predict responses in pharyngeal patency to selective hypoglossal nerve stimulation. J Clin Sleep Med. 2023;19(5):947-955.


Assuntos
Terapia por Estimulação Elétrica , Apneia Obstrutiva do Sono , Humanos , Nervo Hipoglosso/fisiologia , Língua , Apneia Obstrutiva do Sono/terapia , Faringe , Sono/fisiologia , Terapia por Estimulação Elétrica/métodos
5.
Temperature (Austin) ; 9(4): 310-317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339088

RESUMO

Thermoregulation is critical in health and disease and is tightly controlled to maintain body temperature homeostasis. Carbon monoxide (CO), an endogenous gasotransmitter produced during heme degradation by heme oxygenases, has been suggested to play a role in body core temperature (Tb) regulation. However, a direct involvement of CO in thermoregulation has not been confirmed and its mechanism(s) of action remain largely unknown. In the present study we characterized the effects of systemic delivery of CO by administration of an orally active CO-releasing molecule (CORM-401) on Tb regulation in conscious freely moving rats. Specifically, we evaluated the main thermo effectors in rats treated with CORM-401 by assessing: (i) non-shivering thermogenesis, i.e. the increased metabolism of brown fat measured through oxygen consumption and (ii) the rate of heat loss from the tail through calculations of heat loss index. We found that oral administration of CORM-401 (30 mg/kg) resulted in augmented CO delivery into the blood circulation as evidenced a by significant increase in carbon monoxy hemoglobin levels(COHb). In addition, treatment with CORM-401 increased Tb, which was caused by an elevated non-shivering thermogenesis indicated by increased oxygen consumption without significant changes in the tail heat loss. On the other hand, CORM-401 did not affect blood pressure, but significantly decreased heart rate. In summary, the findings of the present study reveal that increased circulating CO levels lead to a rise in Tb, which could have important implications in the emerging role of CO in the modulation of energetic metabolism.

6.
Sleep ; 45(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35778900

RESUMO

Obesity hypoventilation syndrome (OHS) is defined as daytime hypercapnia in obese individuals in the absence of other underlying causes. In the United States, OHS is present in 10%-20% of obese patients with obstructive sleep apnea and is linked to hypoventilation during sleep. OHS leads to high cardiorespiratory morbidity and mortality, and there is no effective pharmacotherapy. The depressed hypercapnic ventilatory response plays a key role in OHS. The pathogenesis of OHS has been linked to resistance to an adipocyte-produced hormone, leptin, a major regulator of metabolism and control of breathing. Mechanisms by which leptin modulates the control of breathing are potential targets for novel therapeutic strategies in OHS. Recent advances shed light on the molecular pathways related to the central chemoreceptor function in health and disease. Leptin signaling in the nucleus of the solitary tract, retrotrapezoid nucleus, hypoglossal nucleus, and dorsomedial hypothalamus, and anatomical projections from these nuclei to the respiratory control centers, may contribute to OHS. In this review, we describe current views on leptin-mediated mechanisms that regulate breathing and CO2 homeostasis with a focus on potential therapeutics for the treatment of OHS.


Assuntos
Síndrome de Hipoventilação por Obesidade , Humanos , Hipercapnia/complicações , Hipoventilação/complicações , Leptina/metabolismo , Obesidade/complicações , Síndrome de Hipoventilação por Obesidade/complicações , Síndrome de Hipoventilação por Obesidade/terapia
7.
Physiol Rep ; 10(10): e15245, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35581741

RESUMO

Serotonin is an important mediator modulating behavior, metabolism, sleep, control of breathing, and upper airway function, but the role of aging in serotonin-mediated effects has not been previously defined. Our study aimed to examine the effect of brain serotonin deficiency on breathing during sleep and metabolism in younger and older mice. We measured breathing during sleep, hypercapnic ventilatory response (HCVR), CO2 production (VCO2 ), and O2 consumption (VO2 ) in 16-18-week old and 40-44-week old mice with deficiency of tryptophan hydroxylase 2 (Tph2), which regulates serotonin synthesis specifically in neurons, compared to Tph2+/+ mice. As expected, aging decreased VCO2 and VO2 . Tph2 knockout resulted in an increase in both metabolic indexes and no interaction between age and the genotype was observed. During wakefulness, neither age nor genotype had an effect on minute ventilation. The genotype did not affect hypercapnic sensitivity in younger mice. During sleep, Tph2-/- mice showed significant decreases in maximal inspiratory flow in NREM sleep, respiratory rate, and oxyhemoglobin saturation in REM sleep, compared to wildtype, regardless of age. Neither serotonin deficiency nor aging affected the frequency of flow limited breaths (a marker of upper airway closure) or apneas. Serotonin deficiency increased the amount and efficiency of sleep only in older animals. In conclusion, younger Tph2-/- mice were able to defend their ventilation and phenotypically did not differ from wildtype during wakefulness. In contrast, both young and old Tph2-/- mice showed sleep-related hypoventilation, which was manifested by hypoxemia during REM sleep.


Assuntos
Respiração , Serotonina , Animais , Encéfalo/metabolismo , Hipercapnia , Camundongos , Serotonina/metabolismo , Sono REM/fisiologia
8.
Inflammation ; 45(3): 1239-1253, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34981315

RESUMO

Sepsis affects 31.5 million people worldwide. It is characterized by an intense drop in blood pressure driving to cardiovascular morbidity and mortality. Modern supportive care has increased survival in patients; however, after experiencing sepsis, several complications are observed, which may be potentiated by new inflammatory events. Nevertheless, the interplay between sepsis survivors and a new immune challenge in cardiovascular regulation has not been previously defined. We hypothesized that cecal ligation and puncture (CLP) cause persistent cardiovascular dysfunctions in rats as well as changes in autonomic-induced cardiovascular responses to lipopolysaccharide (LPS). Male Wistar rats had mean arterial pressure (MAP) and heart rate (HR) recorded before and after LPS or saline administration to control or CLP survivor rats. CLP survivor rats had similar baseline MAP and HR when compared to control. LPS caused a drop in MAP accompanied by tachycardia in control, while CLP survivor rats had a noteworthy enhanced MAP and a blunted tachycardia. LPS-induced hemodynamic changes were related to an autonomic disbalance to the heart and resistance vessels that were expressed as an increased low- and high-frequency power of pulse interval in CLP survivors after saline and enhancement in the low-frequency power of systolic arterial pressure in control rats after LPS. LPS-induced plasma interferon γ, but not interleukin-10 surges, was blunted in CLP survivor rats. To further access whether or not LPS-induced autonomic disbalance in CLP survivor rats was associated with oxidative stress dysregulation, superoxide dismutase (SOD) activity and thiobarbituric acid reactive substances (TBARS) plasma levels changes were measured. LPS-induced oxidative stress was higher in CLP survivor rats. These findings indicate that key changes in hemodynamic regulation of CLP survivors rats take place in response to LPS that are associated with oxidative stress changes, i.e., reduced SOD activity and increased TBARS levels.


Assuntos
Lipopolissacarídeos , Sepse , Animais , Ceco/metabolismo , Modelos Animais de Doenças , Inflamação/etiologia , Lipopolissacarídeos/farmacologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Sobreviventes , Substâncias Reativas com Ácido Tiobarbitúrico
9.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201760

RESUMO

Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway due to the loss of upper airway muscle tone during sleep. OSA is highly prevalent, especially in obesity. There is no pharmacotherapy for OSA. Previous studies have demonstrated the role of leptin, an adipose-tissue-produced hormone, as a potent respiratory stimulant. Leptin signaling via a long functional isoform of leptin receptor, LEPRb, in the nucleus of the solitary tract (NTS), has been implicated in control of breathing. We hypothesized that leptin acts on LEPRb positive neurons in the NTS to increase ventilation and maintain upper airway patency during sleep in obese mice. We expressed designer receptors exclusively activated by designer drugs (DREADD) selectively in the LEPRb positive neurons of the NTS of Leprb-Cre-GFP mice with diet-induced obesity (DIO) and examined the effect of DREADD ligand, J60, on tongue muscle activity and breathing during sleep. J60 was a potent activator of LEPRb positive NTS neurons, but did not stimulate breathing or upper airway muscles during NREM and REM sleep. We conclude that, in DIO mice, the stimulating effects of leptin on breathing during sleep are independent of LEPRb signaling in the NTS.


Assuntos
Neurônios/metabolismo , Receptores de Droga/metabolismo , Receptores para Leptina/metabolismo , Síndromes da Apneia do Sono/fisiopatologia , Núcleo Solitário/citologia , Animais , Eletromiografia , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Obesidade/etiologia , Obesidade/fisiopatologia , Sono REM , Núcleo Solitário/metabolismo
10.
Sleep ; 44(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33624805

RESUMO

STUDY OBJECTIVES: Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH). We hypothesized that leptin receptor LepRb-deficient db/db mice have obesity hypoventilation and that restoration of leptin signaling in the DMH will increase ventilation during sleep in these animals. METHODS: We measured arterial blood gas in unanesthetized awake db/db mice. We subsequently infected these animals with Ad-LepRb or control Ad-mCherry virus into the DMH and measured ventilation during sleep as well as CO2 production after intracerebroventricular (ICV) infusions of phosphate-buffered saline or leptin. RESULTS: Awake db/db mice had elevated CO2 levels in the arterial blood. Ad-LepRb infection resulted in LepRb expression in the DMH neurons in a similar fashion to wildtype mice. In LepRb-DMH db/db mice, ICV leptin shortened REM sleep and increased inspiratory flow, tidal volume, and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in these animals. CONCLUSION: Leptin stimulates breathing and treats obesity hypoventilation acting on LepRb-positive neurons in the DMH.


Assuntos
Leptina , Receptores para Leptina , Animais , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Obesos , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Sono
11.
Cell Mol Neurobiol ; 41(4): 751-763, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32445041

RESUMO

Exposure to noise produces cognitive and emotional disorders, and recent studies have shown that auditory stimulation or deprivation affects hippocampal function. Previously, we showed that exposure to high-intensity sound (110 dB, 1 min) strongly inhibits Schaffer-CA1 long-term potentiation (LTP). Here we investigated possible mechanisms involved in this effect. We found that exposure to 110 dB sound activates c-fos expression in hippocampal CA1 and CA3 neurons. Although sound stimulation did not affect glutamatergic or GABAergic neurotransmission in CA1, it did depress the level of brain-derived neurotrophic factor (BDNF), which is involved in promoting hippocampal synaptic plasticity. Moreover, perfusion of slices with BDNF rescued LTP in animals exposed to sound stimulation, whereas BDNF did not affect LTP in sham-stimulated rats. Furthermore, LM22A4, a TrkB receptor agonist, also rescued LTP from sound-stimulated animals. Our results indicate that depression of hippocampal BDNF mediates the inhibition of LTP produced by high-intensity sound stimulation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/deficiência , Hipocampo/fisiologia , Potenciação de Longa Duração , Som , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/fisiologia , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/metabolismo , Ratos Wistar , Sinapses/fisiologia , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo
12.
Am J Respir Crit Care Med ; 203(1): 102-110, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673075

RESUMO

Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.


Assuntos
Drogas Desenhadas/uso terapêutico , Nervo Hipoglosso/efeitos dos fármacos , Músculos Faríngeos/efeitos dos fármacos , Receptores de Droga/efeitos dos fármacos , Respiração/efeitos dos fármacos , Apneia Obstrutiva do Sono/tratamento farmacológico , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
13.
Can J Physiol Pharmacol ; 99(8): 812-820, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33356867

RESUMO

Physical exercise-induced skeletal muscle damage may be characterized by increased oxidative stress, inflammation, and apoptosis which may be beneficial when exercise is regular, but it is rather harmful when exercise is exhaustive and performed acutely by unaccustomed individuals. Molecular hydrogen (H2) has emerged as a potent antioxidant, anti-inflammatory, and anti-apoptotic agent, but its action on the deleterious effects of acute exhaustive exercise in muscle damage remain unknown. Therefore, we tested the hypothesis that H2 decreases acute exhaustive exercise-induced skeletal muscle damage of sedentary rats. Rats ran to exhaustion on a sealed treadmill inhaling an H2-containing mixture or the control gas. We measured oxidative stress (SOD, GSH, and TBARS), inflammatory (TNF-α, IL-1ß, IL-6, IL-10, and NF-κB phosphorylation), and apoptotic (expression of caspase-3, Bcl-2, and HSP70) markers. Exercise caused no changes in SOD activity but increased TBARS levels. H2 caused increases in exercise-induced SOD activity and blunted exercise-induced increased TBARS levels. We observed exercise-induced TNF-α and IL-6 surges as well as NF-κB phosphorylation, which were blunted by H2. Exercise increased cleaved caspase-3 expression, and H2 reduced this response. In conclusion, H2 effectively downregulates muscle damage, reducing oxidative stress, inflammation, and apoptosis after acute exhaustive exercise performed by an unaccustomed organism.


Assuntos
Estresse Oxidativo , Animais , Anti-Inflamatórios , Antioxidantes , Inflamação , Ratos
14.
J Physiol ; 598(20): 4663-4680, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32749717

RESUMO

KEY POINTS: The mechanisms involved in hypothermia and fever during systemic inflammation (SI) remain largely unknown. Our data support the contention that brain-mediated mechanisms are different in hypertension during SI. Considering that, clinically, it is not easy to assess all mechanisms involved in cardiovascular and thermoregulatory control during SI, the present study sheds light on these integrated mechanisms that may be triggered simultaneously in septic hypertensive patients. The result obtained demonstrate that, in lipopolysaccharide-induced SI, an increased hypothermia is observed in neurogenic hypertension, which is caused by reduced hypothalamic prostaglandin E2 production and increased heat loss in conscious rats. Therefore, the results of the present study provide useful insight for clinical trials evaluating the thermoregulatory outcomes of septic patients with hypertension. ABSTRACT: Hypertension is a prevalent disease characterized by autonomic-induced elevated and sustained blood pressure levels and abnormal body core temperature (Tb) regulation. The present study aimed to determine the brain-mediated mechanisms involved in the thermoregulatory changes observed during lipopolysaccharide (LPS)-induced systemic inflammation (SI; at a septic-like model) in spontaneously hypertensive rats (SHR). We combined Tb and skin temperature (Tsk) analysis, assessment of prostaglandin (PG) E2 levels (the proximal mediator of fever) in the anteroventral region of the hypothalamus (AVPO; an important site for Tb control), oxygen consumption analysis, cardiovascular recordings, assays of inflammatory markers, and evaluation of oxidative stress in the plasma and brain of male Wistar rats and SHR that had received LPS (1.5 mg kg-1 ) or saline. LPS induced hypothermia followed by fever in Wistar rats, whereas, in SHR, a maintained hypothermia without fever were observed. These thermoregulatory responses were associated with an increased heat loss in SHR compared to Wistar rats. We measured LPS-induced increased PGE2 levels in the AVPO in Wistar rats, but not in SHR. The LPS-induced drop in blood pressure was higher in SHR than in Wistar rats. Furthermore, LPS-induced plasma and brain [regions involved in autonomic control: nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM)] cytokine surges were blunted, whereas oxidative stress was higher in SHR. LPS-induced SI leads to blunted cytokine surges both systemically (plasma) and centrally (NTS and RVLM) and reduced hypothalamic PGE2 production, which are all associated with increased hypothermia mediated by increased heat loss, but not by heat production, in SHR.


Assuntos
Hipertensão , Hipotermia Induzida , Animais , Regulação da Temperatura Corporal , Dinoprostona , Humanos , Hipotálamo , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar
16.
Sci Rep ; 10(1): 6990, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332859

RESUMO

Beyond the regulation of cardiovascular function, baroreceptor afferents play polymodal roles in health and disease. Sepsis is a life-threatening condition characterized by systemic inflammation (SI) and hemodynamic dysfunction. We hypothesized that baroreceptor denervation worsens lipopolysaccharide (LPS) induced-hemodynamic collapse and SI in conscious rats. We combined: (a) hemodynamic and thermoregulatory recordings after LPS administration at a septic-like non-lethal dose (b) analysis of the cardiovascular complexity, (c) evaluation of vascular function in mesenteric resistance vessels, and (d) measurements of inflammatory cytokines (plasma and spleen). LPS-induced drop in blood pressure was higher in sino-aortic denervated (SAD) rats. LPS-induced hemodynamic collapse was associated with SAD-dependent autonomic disbalance. LPS-induced vascular dysfunction was not affected by SAD. Surprisingly, SAD blunted LPS-induced surges of plasma and spleen cytokines. These data indicate that baroreceptor afferents are key to alleviate LPS-induced hemodynamic collapse, affecting the autonomic control of cardiovascular function, without affecting resistance blood vessels. Moreover, baroreflex modulation of the LPS-induced SI and hemodynamic collapse are not dependent of each other given that baroreceptor denervation worsened hypotension and reduced SI.


Assuntos
Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Barorreflexo/imunologia , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/imunologia , Hemodinâmica/fisiologia , Inflamação/imunologia , Masculino , Ratos , Ratos Wistar
17.
Neurosci Lett ; 715: 134577, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31715290

RESUMO

Physical exercise-induced inflammation may be beneficial when exercise is regular but it may be harmful when exercise is intense and performed by unaccustomed individuals/rats. Molecular hydrogen (H2) has recently emerged as a powerful anti-inflammatory, antioxidant and anti-apoptotic molecule in a number of pathological conditions, but little is known about its putative role under physiological conditions such as physical exercise. Therefore, we tested the hypothesis that H2 decreases intense acute exercise-induced inflammation in the hippocampus, since it is a brain region particularly susceptible to inflammation. Moreover, we also assessed hippocampus oxidative status. Rats ran on a sealed treadmill inhaling either the H2 (2% H2, 21% O2, balanced with N2) or the control gas (0% H2, 21% O2, balanced with N2) and hippocampal samples were collected immediately or 3 h after exercise. We measured hippocampal levels of cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6 and IL-10] and oxidative markers [superoxide dismutase (SOD), thiobarbituric acid reactive species (TBARS) and nitrite/nitrate (NOx)]. Exercise increased TNF-α, IL-6 and IL-10 immediately after the session, whereas no change in IL-1ß levels was observed. Conversely, exercise did not cause any change in SOD activity, TBARS and NOx levels. H2 inhibited the exercise-induced surges in TNF-α and IL-6, and potentiated the IL-10 surge, immediately after the exercise. Moreover, no change in IL1-ß levels of rats inhaling H2 was observed. Regarding the oxidative stress markers, H2 failed to cause any change in SOD activity, TBARS and NOx levels. No significant change was observed in any of the assessed parameters 3 h after the exercise bout. These data are consistent with the notion that H2 acts as a powerful anti-inflammatory agent not only down-modulating pro-inflammatory cytokines (TNF-α and IL-6) but also upregulating an anti-inflammatory cytokine (IL-10) production without affecting the local oxidative stress status. These data indicate that H2 effectively decreases exercise-induced inflammation in the hippocampus, despite the fact that this region is particularly prone to inflammatory insults.


Assuntos
Anti-Inflamatórios/administração & dosagem , Hipocampo/metabolismo , Hidrogênio/administração & dosagem , Mediadores da Inflamação/metabolismo , Condicionamento Físico Animal/efeitos adversos , Comportamento Sedentário , Administração por Inalação , Animais , Hipocampo/efeitos dos fármacos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Condicionamento Físico Animal/tendências , Distribuição Aleatória , Ratos , Ratos Wistar
18.
J Neuroinflammation ; 16(1): 125, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221164

RESUMO

BACKGROUND: Lipopolysaccharide (LPS)-induced systemic inflammation (SI) is associated with neuroinflammation in the brain, hypotension, tachycardia, and multiple organs dysfunctions. Considering that during SI these important cardiovascular and inflammatory changes take place, we measured the sensitivity of the cardiovascular reflexes baroreflex, chemoreflex, and Bezold-Jarisch that are key regulators of hemodynamic function. We also evaluated neuroinflammation in the nucleus tractus solitarius (NTS), the first synaptic station that integrates peripheral signals arising from the cardiovascular and inflammatory status. METHODS: We combined cardiovascular recordings, immunofluorescence, and assays of inflammatory markers in male Wistar rats that receive iv administration of LPS (1.5 or 2.5 mg kg-1) to investigate putative interactions of the neuroinflammation in the NTS and in the anteroventral preoptic region of the hypothalamus (AVPO) with the short-term regulation of blood pressure and heart rate. RESULTS: LPS induced hypotension, tachycardia, autonomic disbalance, hypothermia followed by fever, and reduction in spontaneous baroreflex gain. On the other hand, during SI, the bradycardic component of Bezold-Jarisch and chemoreflex activation was increased. These changes were associated with a higher number of activated microglia and interleukin (IL)-1ß levels in the NTS. CONCLUSIONS: The present data are consistent with the notion that during SI and neuroinflammation in the NTS, rats have a reduced baroreflex gain, combined with an enhancement of the bradycardic component of Bezold-Jarisch and chemoreflex despite the important cardiovascular impairments (hypotension and tachycardia). These changes in the cardiac component of Bezold-Jarisch and chemoreflex may be beneficial during SI and indicate that the improvement of theses reflexes responsiveness though specific nerve stimulations may be useful in the management of sepsis.


Assuntos
Hemodinâmica/fisiologia , Inflamação/fisiopatologia , Núcleo Solitário/fisiopatologia , Animais , Hemodinâmica/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar , Núcleo Solitário/efeitos dos fármacos
19.
Neuroscience ; 406: 467-486, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30930131

RESUMO

Obstructive sleep apnea patients face episodes of chronic intermittent hypoxia (CIH), which has been suggested as a causative factor for increased sympathetic activity (SNA) and hypertension. Female rats exposed to CIH develop hypertension and exhibit changes in respiratory-sympathetic coupling, marked by an increase in the inspiratory modulation of SNA. We tested the hypothesis that enhanced inspiratory-modulation of SNA is dependent on carotid bodies (CBs) and are associated with changes in respiratory network activity. For this, in CIH-female rats we evaluated the effect of CBs ablation on respiratory-sympathetic coupling, recorded from respiratory neurons in the working heart-brainstem preparation and from NTS neurons in brainstem slices. CIH-female rats had an increase in peripheral chemoreflex response and in spontaneous excitatory neurotransmission in NTS. CBs ablation prevents the increase in inspiratory modulation of SNA in CIH-female rats. Pre-inspiratory/inspiratory (Pre-I/I) neurons of CIH-female rats have a reduced firing frequency. Post-inspiratory neurons are active for a longer period during expiration in CIH-female rats. Further, using the computational model of a brainstem respiratory-sympathetic network, we demonstrate that a reduction in Pre-I/I neuron firing frequency simulates the enhanced inspiratory SNA modulation in CIH-female rats. We conclude that changes in respiratory-sympathetic coupling in CIH-female rats is dependent on CBs and it is associated with changes in firing properties of specific respiratory neurons types.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipóxia/fisiopatologia , Inalação/fisiologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Animais , Corpo Carotídeo/fisiopatologia , Feminino , Ratos , Ratos Wistar
20.
Brain Behav Immun ; 80: 255-265, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30885841

RESUMO

An exceptionally high mortality rate is observed in sepsis and septic shock. Systemic administration of lipopolysaccharide (LPS) has been used as an experimental model for sepsis resulting in an exacerbated immune response, brain neurochemistry adjustments, hypotension, and hypothermia followed by fever. Central serotonergic pathways not only modulate systemic inflammation (SI) but also are affected by SI, including in the anteroventral region of the hypothalamus (AVPO), which is the hierarchically most important region for body temperature (Tb) control. In this study, we sought to determine if central serotonin (5-HT) plays a role in SI induced by intravenous administration of LPS (1.5 mg/kg) in male Wistar rats (280-350 g) by assessing 5-HT levels in the AVPO, mean arterial pressure, heart rate, and Tb up to 300 min after LPS administration, as well as assessing plasma and spleen cytokine levels, nitric oxide (NO) plasma levels, and prostaglandin (PG) E2 levels in the AVPO at 75 min and 300 min after LPS administration. We observed reduced AVPO 5-HT levels, hypotension, tachycardia, hypothermia followed by fever, as well as observing increased plasma NO, plasma and spleen cytokines and AVPO PGE2 levels in SI. Intracerebroventricular (icv) administration of 5-HT 30 min before LPS administration prevented hypotension and hypothermia, which were accompanied by reduced plasma NO, as well as plasma TNF-α, IL-1ß, IL-6, and IL-10 and spleen TNF-α and IL-10 levels. We suggest that SI reduced 5-HT levels in the AVPO favor an increased pro-inflammatory status both centrally and peripherally that converge to hypotension and hypothermia. Moreover, our results are consistent with the notion that exogenous 5-HT given icv prevents hypotension and hypothermia probably activating the splenic anti-inflammatory pathway.


Assuntos
Citocinas/sangue , Hipotensão/metabolismo , Hipotermia/metabolismo , Inflamação/metabolismo , Serotonina/metabolismo , Baço/metabolismo , Animais , Dopamina/metabolismo , Hipotensão/complicações , Hipotálamo Anterior/metabolismo , Hipotermia/complicações , Inflamação/induzido quimicamente , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Óxido Nítrico/sangue , Norepinefrina/metabolismo , Ratos Wistar , Serotonina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...