Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 248: 104023, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35640422

RESUMO

The Diavik Waste Rock Project (DWRP) project included four principal components focused on the development of techniques for assessing the environmental impacts of waste rock at mine sites. These components were small-volume laboratory experiments, intermediate- and large-volume field experiments, and assessment of the operational-scale waste-rock stockpiles, which facilitated characterization of waste-rock weathering at different scales. The heavily instrumented large-scale field experiments (test piles) were constructed to replicate, as closely as practicable, the temperature, water flow, and gas transport regimes of a waste-rock pile that is exposed to annual freezing and thawing cycles and to facilitate characterization of the long-term weathering of a low-sulfide waste rock. An integrated conceptual model of sulfide-bearing waste-rock weathering, developed at the small scale, was applied to assess the capacity of the conceptual model to capture the geochemical evolution of the waste rock at the large field-scale test-pile experiment. The integrated conceptual model was implemented using reactive transport code MIN3P, taking into account scale-dependent mechanisms. The test-pile mineralogy was similar to the small-scale laboratory experiments and included low-sulfide waste rock with an S content of 0.053 wt% (primarily pyrrhotite). The flow regime of the test pile was simulated using parameters measured as part of other DWRP investigations, including temporally variable infiltration estimates that represented the measured precipitation events at the site. The temporally and spatially variable temperature of the test pile was interpolated from values measured using instrumentation installed at the beginning of the experiment and was included in the simulation to refine the temperature dependence of the geochemical reactions. To allow continuous, multi-year simulation, freezing was also simulated to represent the conditions experienced at the test-pile experiment. Normalized root mean square error analysis of the large-scale field experiment simulation results indicated most parameters compare well to measured daily mass flux (i.e., the fraction of the range of annual values encompassed in the residual was less than 0.5 for SO4, Fe, Ni, Si, Ca, K, Mg, Na, and pH and 1.0 or less for all parameters except Cu). The method of using an integrated conceptual model developed from the results of humidity cell experiments to implement a mechanistic approach for assessing the primary geochemical processes of waste-rock weathering on a large scale was shown to provide reasonable results; however, the results are specific to the study site and the approach requires application to various sites under different geological and climatological conditions to facilitate further refinement.


Assuntos
Modelos Teóricos , Sulfetos , Fenômenos Físicos , Temperatura
2.
J Contam Hydrol ; 237: 103755, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418436

RESUMO

In situ thermal recovery is utilized extensively for unconventional bitumen extraction in the Cold Lake-Beaver River (CLBR) basin in Alberta, Canada. Public health concerns have been raised over potable groundwater contamination and arsenic release adjacent to these operations within the CLBR basin, which have been linked to subsurface heating of aquifer sediments. Under localized heated conditions, As-bearing aquifer sediments have been shown to undergo water-rock interactions and release constituents at near neutral pH conditions; however, release mechanisms have yet to be conclusively reported. To investigate the hydrogeochemical processes of aquifer heating and solute transport in detail, this study applies a novel heated column design to mimic saturated aquifer materials in contact with a thermal recovery well while constraining flow and geochemical conditions. Two column experiment scenarios were considered using: 1) quartz [SiO2] sand with 0.6 wt% pyrite [FeS2]; and 2) aquifer sediments collected from the CLBR region. Heated temperature gradients between 50 °C and 90 °C were maintained within a 0.6 m section of the 3 m column with a flow rate of one pore volume per week. During heated low oxygen (<3 mg L-1) conditions, results generally show increases in pH, Al, As, B, Mn, Mo, Si and Zn concentrations within and downgradient of the column heating section. Constituent release is primarily attributed to thermal desorption from Fe oxides, clay and silicate mineral dissolution, competitive anion exchange, and increased mixing. Overall results suggest that these mechanisms are responsible for increasing constituent concentrations in groundwater adjacent to in situ thermal recovery operations.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Alberta , Arsênio/análise , Sedimentos Geológicos , Dióxido de Silício , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 569-570: 159-167, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341116

RESUMO

Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations.


Assuntos
Poluentes Atmosféricos/análise , Produtos Agrícolas/metabolismo , Poluentes do Solo/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Modelos Químicos , Modelos Teóricos
4.
J Contam Hydrol ; 192: 35-49, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27343827

RESUMO

Transport of reactive solutes in groundwater is affected by physical and chemical heterogeneity of the porous medium, leading to complex spatio-temporal patterns of concentrations and reaction rates. For certain cases of bioreactive transport, it could be shown that the concentrations of reactive constituents in multi-dimensional domains are approximately aligned with isochrones, that is, lines of identical travel time, provided that the chemical properties of the matrix are uniform. We extend this concept to combined physical and chemical heterogeneity by additionally considering the time that a water parcel has been exposed to reactive materials, the so-called exposure time. We simulate bioreactive transport in a one-dimensional domain as function of time and exposure time, rather than space. Subsequently, we map the concentrations to multi-dimensional heterogeneous domains by means of the mean exposure time at each location in the multi-dimensional domain. Differences in travel and exposure time at a given location are accounted for as time difference. This approximation simplifies reactive-transport simulations significantly under conditions of steady-state flow when reactions are restricted to specific locations. It is not expected to be exact in realistic applications because the underlying assumption, such as neglecting transverse mixing altogether, may not hold. We quantify the error introduced by the approximation for the hypothetical case of a two-dimensional, binary aquifer made of highly-permeable, non-reactive and low-permeable, reactive materials releasing dissolved organic matter acting as electron donor for aerobic respiration and denitrification. The kinetically controlled reactions are catalyzed by two non-competitive bacteria populations, enabling microbial growth. Even though the initial biomass concentrations were uniform, the interplay between transport, non-uniform electron-donor supply, and bio-reactions led to distinct spatial patterns of the two types of biomass at late times. Results obtained by mapping the exposure-time based results to the two-dimensional domain are compared with simulations based on the two-dimensional, spatially explicit advection-dispersion-reaction equation. Once quasi-steady state has been reached, we find a good agreement in terms of the chemical-compound concentrations between the two approaches inside the reactive zones, whereas the exposure-time based model is not able to capture reactions occurring in the zones with zero electron-donor release. We conclude that exposure-time models provide good approximations of nonlinear bio-reactive transport when transverse mixing is not the overall controlling process and all reactions are essentially restricted to distinct reactive zones.


Assuntos
Água Subterrânea/química , Hidrologia/métodos , Modelos Teóricos , Aerobiose , Anaerobiose , Biodegradação Ambiental , Desnitrificação , Cinética , Oxigênio/metabolismo , Porosidade , Fatores de Tempo , Movimentos da Água
5.
Sci Total Environ ; 538: 789-801, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26340582

RESUMO

Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Modelos Químicos , Poluentes do Solo/análise , Compostos Orgânicos Voláteis/análise , Atmosfera/química , Solo/química , Volatilização
6.
Environ Sci Technol ; 49(9): 5467-75, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25839086

RESUMO

Chromium isotope analysis is rapidly becoming a valuable complementary tool for tracking Cr(VI) treatment in groundwater. Evaluation of various treatment materials has demonstrated that the degree of isotope fractionation is a function of the reaction mechanism, where reduction of Cr(VI) to Cr(III) induces the largest fractionation. However, it has also been observed that uniform flow conditions can contribute complexity to isotope measurements. Here, laboratory batch and column experiments were conducted to assess Cr isotope fractionation during Cr(VI) reduction by zerovalent iron under both static and saturated flow conditions. Isotope measurements were accompanied by traditional aqueous geochemical measurements (pH, Eh, concentrations) and solid-phase analysis by scanning electron microscopy and X-ray absorption spectroscopy. Increasing δ(53)Cr values were associated with decreasing Cr(VI) concentrations, which indicates reduction; solid-phase analysis showed an accumulation of Cr(III) on the iron. Reactive transport modeling implemented a dual mechanism approach to simulate the fractionation observed in the experiments. The faster heterogeneous reaction pathway was associated with minimal fractionation (ε=-0.2‰), while the slower homogeneous pathway exhibited a greater degree of fractionation (ε=-0.9‰ for the batch experiment, and ε=-1.5‰ for the column experiment).


Assuntos
Isótopos do Cromo/análise , Cromo/química , Fracionamento Químico , Isótopos do Cromo/química , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Ferro/química , Microscopia Eletrônica de Varredura , Modelos Químicos , Oxirredução , Água/análise , Espectroscopia por Absorção de Raios X
7.
J Contam Hydrol ; 164: 1-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24908586

RESUMO

Secondary water quality impacts can result from a broad range of coupled reactions triggered by primary groundwater contaminants. Data from a crude-oil spill research site near Bemidji, MN provide an ideal test case for investigating the complex interactions controlling secondary impacts, including depleted dissolved oxygen and elevated organic carbon, inorganic carbon, CH4, Mn, Fe, and other dissolved ions. To better understand these secondary impacts, this study began with an extensive data compilation of various data types, comprising aqueous, sediment, gas, and oil phases, covering a 260m cross-sectional domain over 30years. Mass balance calculations are used to quantify pathways that control secondary components, by using the data to constrain the sources and sinks for the important redox processes. The results show that oil constituents other than BTEX (benzene, toluene, ethylbenzene, o-, m- and p-xylenes), including n-alkanes and other aromatic compounds, play significant roles in plume evolution and secondary water quality impacts. The analysis underscores previous results on the importance of non-aqueous phases. Over 99.9% of the Fe(2+) plume is attenuated by immobilization on sediments as Fe(II) and 85-95% of the carbon biodegradation products are outgassed. Gaps identified in carbon and Fe mass balances and in pH buffering mechanisms are used to formulate a new conceptual model. This new model includes direct out-gassing of CH4 and CO2 from organic carbon biodegradation, dissolution of directly produced CO2, and sorption with H(+) exchange to improve pH buffering. The identification of these mechanisms extends understanding of natural attenuation of potential secondary impacts at enhanced reductive dechlorination sites, particularly for reduced Fe plumes, produced CH4, and pH perturbations.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Modelos Químicos , Poluição por Petróleo/análise , Petróleo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Minnesota , Qualidade da Água
8.
J Contam Hydrol ; 151: 68-82, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23743511

RESUMO

The reactive and hydraulic efficacy of zero valent iron permeable reactive barriers (ZVI PRBs) is strongly affected by geochemical composition of the groundwater treated. An enhanced version of the geochemical simulation code MIN3P was applied to simulate dominating processes in chlorinated hydrocarbons (CHCs) treating ZVI PRBs including geochemical dependency of ZVI reactivity, gas phase formation and a basic formulation of degassing. Results of target oriented column experiments with distinct chemical conditions (carbonate, calcium, sulfate, CHCs) were simulated to parameterize the model. The simulations demonstrate the initial enhancement of anaerobic iron corrosion due to carbonate and long term inhibition by precipitates (chukanovite, siderite, iron sulfide). Calcium was shown to enhance long term corrosion due to competition for carbonate between siderite, chukanovite, and aragonite, with less inhibition of iron corrosion by the needle like aragonite crystals. Application of the parameterized model to a field site (Bernau, Germany) demonstrated that temporarily enhanced groundwater carbonate concentrations caused an increase in gas phase formation due to the acceleration of anaerobic iron corrosion.


Assuntos
Hidrocarbonetos Clorados/química , Ferro/química , Modelos Teóricos , Poluentes Químicos da Água/química , Cálcio/química , Carbonato de Cálcio/química , Carbonatos/química , Água Subterrânea , Sulfetos/química , Movimentos da Água
9.
Environ Sci Technol ; 46(24): 13311-6, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23153412

RESUMO

Chromium isotope fractionation is indicative of mass-transfer processes, such as reduction of Cr(VI) to Cr(III) during groundwater remediation. Laboratory experiments comparing batch and column treatment of Cr(VI) using organic carbon suggest that the associated isotope fractionation may be influenced by solute-transport mechanisms. These batch and column experiments were simulated using the reactive transport model MIN3P to further evaluate the effects of Cr reduction and transport on isotope fractionation under saturated flow conditions. Simulation of the batch experiment provided a good fit to the experimental data, where a fractionation factor (α53) of 0.9965 was attributed to a single, dominant Cr(VI) removal mechanism. Calibration of the column simulations to the experimental results suggested the presence of a second, more rapid Cr(VI) removal mechanism with α53 = 0.9992. Results from this study demonstrate that the interpretation of Cr isotope fractionation during reduction can be complex, particularly where multiple removal mechanisms are evident. Reactive transport modeling of Cr isotope fractionation can provide a quantitative assessment of the contaminant removal mechanisms, thus improving the application of Cr isotope measurements as a tool to track Cr(VI) migration and attenuation in groundwater.


Assuntos
Cromo/química , Modelos Químicos , Fracionamento Químico , Isótopos do Cromo , Simulação por Computador , Cinética , Movimento (Física) , Oxirredução
10.
Environ Sci Technol ; 46(12): 6742-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22540940

RESUMO

In granular iron permeable reactive barriers (PRBs), hydrogen gas formation, entrapment and release of gas bubbles, and secondary mineral precipitation have been known to affect the permeability and reactivity. The multicomponent reactive transport model MIN3P was enhanced to couple gas formation and release, secondary mineral precipitation, and the effects of these processes on hydraulic properties and iron reactivity. The enhanced model was applied to a granular iron column, which was studied for the treatment of trichloroethene (TCE) in the presence of dissolved CaCO(3). The simulation reasonably reproduced trends in gas formation, secondary mineral precipitation, permeability changes, and reactivity changes observed over time. The simulation showed that the accumulation of secondary minerals reduced the reactivity of the granular iron over time, which in turn decreased the rate of mineral accumulation, and also resulted in a gradual decrease in gas formation over time. This study provides a quantitative assessment of the evolving nature of geochemistry and permeability, resulting from coupled processes of gas formation and mineral precipitation, which leads to a better understanding of the processes controlling the granular iron reactivity, and represents an improved method for incorporating these factors into the design of granular iron PRBs.


Assuntos
Ferro/química , Minerais/química , Modelos Teóricos , Tricloroetileno/química
11.
J Contam Hydrol ; 125(1-4): 13-25, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21612840

RESUMO

High resolution direct-push profiling over short vertical distances was used to investigate CH(4) attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH(4) and CO(2), and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in δ(13)C(CH4) from an average of -57.6‰ (±1.7‰) in the methanogenic zone to -39.6‰ (±8.7‰) at 105m downgradient, strongly suggest CH(4) attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5m below the water table suggesting that transport of O(2) across the water table is leading to aerobic degradation of CH(4) at this interface. Dissolved N(2) concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O(2) through aerobic degradation of CH(4) or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O(2) rich recharge water were important O(2) transport mechanisms.


Assuntos
Monitoramento Ambiental/métodos , Metano/metabolismo , Methylococcaceae/metabolismo , Petróleo/metabolismo , Poluentes Químicos da Água/metabolismo , Aerobiose , Anaerobiose , Análise por Conglomerados , DNA/análise , DNA/isolamento & purificação , Monitoramento Ambiental/instrumentação , Gases/análise , Gases/química , Água Subterrânea/análise , Água Subterrânea/química , Água Subterrânea/microbiologia , Metano/análise , Metano/química , Minnesota , Análise Multivariada , Oxirredução , Oxigênio/análise , Oxigênio/química , Oxigênio/metabolismo , Petróleo/análise , Petróleo/microbiologia , Poluição por Petróleo/análise , Reação em Cadeia da Polimerase , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
12.
J Environ Qual ; 40(1): 90-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21488497

RESUMO

Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates whether it will reside in the aqueous or solid phase and thus plays an integral role in the mobility of uranium within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO2(2+) and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO. However, various factors within soils and sediments, such as U(VI) speciation and the presence of competitive electron acceptors, may limit biological reduction of U(VI). Here we examine simultaneous dissimilatory reduction of Fe(III) and U(VI) in batch systems containing dissolved uranyl acetate and ferrihydrite-coated sand. Varying amounts of calcium were added to induce changes in aqueous U(VI) speciation. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% in absence of Ca or ferrihydrite, but only 24% (with ferrihydrite) and 14% (without ferrihydrite) were removed for systems with 0.8 mM Ca. Dissimilatory reduction of Fe(III) and U(VI) proceed through different enzyme pathways within one type of organism. We quantified the rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concecentration (0-0.8 mM). The mathematical construct, implemented with the reactive transport code MIN3P, reveals predominant factors controlling rates and extent of uranium reduction in complex geochemical systems.


Assuntos
Biodegradação Ambiental , Ferro/química , Shewanella putrefaciens/metabolismo , Microbiologia do Solo , Poluentes do Solo/química , Urânio/química , Simulação por Computador , Modelos Biológicos , Oxirredução
13.
Environ Sci Technol ; 45(7): 2863-70, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21355530

RESUMO

Isotope ratio measurements provide a tool for indicating the relative significance of biogeochemical reactions and for constraining estimates of the extent and rate of reactions in passive treatment systems. In this paper, the reactive transport model MIN3P is used to evaluate sulfur isotope fractionation in column experiments designed to simulate treatment of contaminated water by microbially mediated sulfate reduction occurring within organic carbon-based and iron and carbon-based permeable reactive barriers. A mass dependent fractionation model was used to determine reaction rates for 32S and 34S compounds during reduction, precipitation, and dissolution reactions and to track isotope-dependent mass transfer during SO4 removal. The δ34S values obtained from the MIN3P model were similar to those obtained from the Rayleigh equation, indicating that there was not a significant difference between the conceptual models. Differences between the MIN3P derived α value and the Rayleigh equation derived value were attributed to minor changes in the dissolution and precipitation rate of gypsum and mathematical differences in the fitting models. The results indicated that the prediction of δ34S was fairly insensitive to differences in the fractionation factor at the concentration ranges measured in the current study. However, more significant differences would be expected at low sulfate conditions.


Assuntos
Recuperação e Remediação Ambiental/métodos , Modelos Químicos , Sulfatos/análise , Poluentes Químicos da Água/análise , Fracionamento Químico/métodos , Sulfatos/metabolismo , Isótopos de Enxofre/análise , Isótopos de Enxofre/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo
14.
Environ Sci Technol ; 40(17): 5361-7, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16999111

RESUMO

Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.


Assuntos
Gases/análise , Modelos Teóricos , Calibragem
15.
J Contam Hydrol ; 87(1-2): 123-54, 2006 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-16797104

RESUMO

In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O(2) to waters otherwise depleted in O(2). Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH(4) partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.


Assuntos
Gases/análise , Gases/química , Transição de Fase , Poluentes da Água/análise , Poluentes da Água/química , Abastecimento de Água , Argônio/química , Simulação por Computador , Metano/química , Modelos Teóricos , Nitrogênio/química , Oxigênio/química , Permeabilidade , Pressão , Fatores de Tempo , Microbiologia da Água
16.
Environ Sci Technol ; 38(11): 3131-8, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15224746

RESUMO

Reactive transport modeling was used to evaluate the performance of two similar column experiments. The experiments were designed to simulate the treatment of acid mine drainage through microbially mediated sulfate reduction and subsequent sulfide mineral precipitation by means of an organic carbon permeable reactive barrier. Principal reactions considered in the simulations include microbially mediated reduction of sulfate by organic matter, mineral dissolution/precipitation reactions, and aqueous complexation/hydrolysis reactions. Simulations of column 1, which contained composted leaf mulch, wood chips, sawdust, and sewage sludge as an organic carbon source, accurately predicted sulfate concentrations in the column effluent throughout the duration of the experiment using a single fixed rate constant for sulfate reduction of 6.9 x 10(-9) mol L(-1) s(-1). Using the same reduction rate for column 2, which contained only composted leaf mulch and sawdust as an organic carbon source, sulfate concentrations at the column outlet were overpredicted at late times, suggesting that sulfate reduction rates increased over the duration of the column experiment and that microbial growth kinetics may have played an important role. These modeling results suggest that the reactivity of the organic carbon treatment material with respect to sulfate reduction does not significantly decrease over the duration of the 14-month experiments. The ability of the columns to remove ferrous iron appears to be strongly influenced by the precipitation of siderite, which is enhanced by the dissolution of calcite. The simulations indicate that while calcite was available in the column, up to 0.02 mol L(-1) of ferrous iron was removed from solution as siderite and mackinawite. Later in the experiments after approximately 300 d, when calcite was depleted from the columns, mackinawite became the predominant iron sink. The ability of the column to remove ferrous iron as mackinawite was estimated to be approximately 0.005 mol L(-1) for column 1. As the precipitation of mackinawite is sulfide limited at later times, the amount of iron removed will ultimately depend on the reactivity of the organic mixture and the amount of sulfate reduced.


Assuntos
Ferro/isolamento & purificação , Mineração , Modelos Teóricos , Poluição da Água/prevenção & controle , Biodegradação Ambiental , Precipitação Química , Concentração de Íons de Hidrogênio , Ferro/química , Oxirredução , Eliminação de Resíduos , Esgotos/química , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...