Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pulm Pharmacol Ther ; 79: 102201, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841351

RESUMO

Activated PI3Kδ Syndrome (APDS) is a rare inherited inborn error of immunity caused by mutations that constitutively activate the p110 delta isoform of phosphoinositide 3-kinase (PI3Kδ), resulting in recurring pulmonary infections. Currently no licensed therapies are available. Here we report the results of an open-label trial in which five subjects were treated for 12 weeks with nemiralisib, an inhaled inhibitor of PI3Kδ, to determine safety, systemic exposure, together with lung and systemic biomarker profiles (Clinicaltrial.gov: NCT02593539). Induced sputum was captured to measure changes in phospholipids and inflammatory mediators, and blood samples were collected to assess pharmacokinetics of nemiralisib, and systemic biomarkers. Nemiralisib was shown to have an acceptable safety and tolerability profile, with cough being the most common adverse event, and no severe adverse events reported during the study. No meaningful changes in phosphatidylinositol (3,4,5)-trisphosphate (PIP3; the enzyme product of PI3Kδ) or downstream inflammatory markers in induced sputum, were observed following nemiralisib treatment. Similarly, there were no meaningful changes in blood inflammatory markers, or lymphocytes subsets. Systemic levels of nemiralisib were higher in subjects in this study compared to previous observations. While nemiralisib had an acceptable safety profile, there was no convincing evidence of target engagement in the lung following inhaled dosing and no downstream effects observed in either the lung or blood compartments. We speculate that this could be explained by nemiralisib not being retained in the lung for sufficient duration, suggested by the increased systemic exposure, perhaps due to pre-existing structural lung damage. In this study investigating a small number of subjects with APDS, nemiralisib appeared to be safe and well-tolerated. However, data from this study do not support the hypothesis that inhaled treatment with nemiralisib would benefit patients with APDS.


Assuntos
Antineoplásicos , Fosfatidilinositol 3-Quinases , Humanos , Administração por Inalação , Inibidores de Proteínas Quinases , Fosfatidilinositol 3-Quinase
2.
Biochem Soc Trans ; 50(2): 665-673, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35437569

RESUMO

As an emerging hot topic of the last decade, Organ on Chip (OoC) is a new technology that is attracting interest from both basic and translational scientists. The Biochemical Society, with its mission of supporting the advancement of science, with addressing grand challenges that have societal impact, has included OoC into their agenda to review the current state of the art, bottlenecks and future directions. This conference brought together representatives of the main stakeholders in the OoC field including academics, end-users, regulators and technology developers to discuss and identify requirements for this new technology to deliver on par with the expectations and the key challenges and gaps that still need to be addressed to achieve robust human-relevant tools, able to positively impact decision making in the pharmaceutical industry and reduce overreliance on poorly predictive animal models.


Assuntos
Dispositivos Lab-On-A-Chip , Tecnologia , Animais , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos
3.
Clin Pharmacokinet ; 61(2): 281-293, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34458976

RESUMO

BACKGROUND AND OBJECTIVES: Physiologically based pharmacokinetic (PBPK) modelling has evolved to accommodate different routes of drug administration and enables prediction of drug concentrations in tissues as well as plasma. The inhalation route of administration has proven successful in treating respiratory diseases but can also be used for rapid systemic delivery, holding great promise for treatment of diseases requiring systemic exposure. The objective of this work was to develop a PBPK model that predicts plasma and tissue concentrations following inhalation administration of the PI3Kδ inhibitor nemiralisib. METHODS: A PBPK model was built in GastroPlus® that includes a complete mechanistic description of pulmonary absorption, systemic distribution and oral absorption following inhalation administration of nemiralisib. The availability of clinical data obtained after intravenous, oral and inhalation administration enabled validation of the model with observed data and accurate assessment of pulmonary drug absorption. The PBPK model described in this study incorporates novel use of key parameters such as lung systemic absorption rate constants derived from human physiological lung blood flows, and implementation of the specific permeability-surface area product per millilitre of tissue cell volume (SpecPStc) to predict tissue distribution. RESULTS: The inhaled PBPK model was verified using plasma and bronchoalveolar lavage fluid concentration data obtained in human subjects. Prediction of tissue concentrations using the permeability-limited systemic disposition tissue model was further validated using tissue concentration data obtained in the rat following intravenous infusion administration to steady state. CONCLUSIONS: Fully mechanistic inhaled PBPK models such as the model described herein could be applied for cross molecule assessments with respect to lung retention and systemic exposure, both in terms of pharmacology and toxicology, and may facilitate clinical indication selection.


Assuntos
Indazóis , Modelos Biológicos , Absorção Fisiológica , Administração por Inalação , Administração Oral , Animais , Simulação por Computador , Humanos , Indóis , Oxazóis , Piperazinas , Ratos
4.
BMC Immunol ; 22(1): 78, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920698

RESUMO

BACKGROUND: Phosphoinositide-3-kinase-delta (PI3Kδ) inhibition is a promising therapeutic approach for inflammatory conditions due to its role in leucocyte proliferation, migration and activation. However, the effect of PI3Kδ inhibition on group 2 innate lymphoid cells (ILC2s) and inflammatory eosinophils remains unknown. Using a murine model exhibiting persistent airway inflammation we sought to understand the effect of PI3Kδ inhibition, montelukast and anti-IL5 antibody treatment on IL33 expression, group-2-innate lymphoid cells, inflammatory eosinophils, and goblet cell metaplasia. RESULTS: Mice were sensitised to house dust mite and after allowing inflammation to resolve, were re-challenged with house dust mite to re-initiate airway inflammation. ILC2s were found to persist in the airways following house dust mite sensitisation and after re-challenge their numbers increased further along with accumulation of inflammatory eosinophils. In contrast to montelukast or anti-IL5 antibody treatment, PI3Kδ inhibition ablated IL33 expression and prevented group-2-innate lymphoid cell accumulation. Only PI3Kδ inhibition and IL5 neutralization reduced the infiltration of inflammatory eosinophils. Moreover, PI3Kδ inhibition reduced goblet cell metaplasia. CONCLUSIONS: Hence, we show that PI3Kδ inhibition dampens allergic inflammatory responses by ablating key cell types and cytokines involved in T-helper-2-driven inflammatory responses.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Eosinófilos/imunologia , Hipersensibilidade/imunologia , Inflamação/imunologia , Interleucina-33/metabolismo , Linfócitos/imunologia , Sistema Respiratório/imunologia , Acetatos/uso terapêutico , Animais , Antígenos de Dermatophagoides/imunologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Ciclopropanos/uso terapêutico , Citocinas/metabolismo , Feminino , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/patologia , Hipersensibilidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-5/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae , Quinolinas/uso terapêutico , Sulfetos/uso terapêutico , Células Th2/imunologia
5.
J Med Chem ; 64(18): 13780-13792, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34510892

RESUMO

Optimization of a previously reported lead series of PI3Kδ inhibitors with a novel binding mode led to the identification of a clinical candidate compound 31 (GSK251). Removal of an embedded Ames-positive heteroaromatic amine by reversing a sulfonamide followed by locating an interaction with Trp760 led to a highly selective compound 9. Further optimization to avoid glutathione trapping, to enhance potency and selectivity, and to optimize an oral pharmacokinetic profile led to the discovery of compound 31 (GSK215) that had a low predicted daily dose (45 mg, b.i.d) and a rat toxicity profile suitable for further development.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Sulfonamidas/farmacologia , Animais , Cristalografia por Raios X , Feminino , Masculino , Camundongos Endogâmicos BALB C , Estrutura Molecular , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Inibidores de Fosfoinositídeo-3 Quinase/metabolismo , Ligação Proteica , Ratos Wistar , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo
6.
Biochem Soc Trans ; 49(4): 1881-1890, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34397080

RESUMO

Organ-on-chip (OoC) systems are in vitro microfluidic models that mimic the microstructures, functions and physiochemical environments of whole living organs more accurately than two-dimensional models. While still in their infancy, OoCs are expected to bring ground-breaking benefits to a myriad of applications, enabling more human-relevant candidate drug efficacy and toxicity studies, and providing greater insights into mechanisms of human disease. Here, we explore a selection of applications of OoC systems. The future directions and scope of implementing OoCs across the drug discovery process are also discussed.


Assuntos
Descoberta de Drogas/métodos , Dispositivos Lab-On-A-Chip , Biomimética , Humanos , Modelos Químicos
7.
Int J Chron Obstruct Pulmon Dis ; 16: 1621-1636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113094

RESUMO

Background: Inhibition of phosphoinositide 3-kinase δ (PI3Kδ) exerts corrective effects on the dysregulated migration characteristics of neutrophils isolated from patients with chronic obstructive pulmonary disease (COPD). Objective: To develop novel, induced sputum endpoints to demonstrate changes in neutrophil phenotype in the lung by administering nemiralisib, a potent and selective inhaled PI3Kδ inhibitor, to patients with stable COPD or patients with acute exacerbation (AE) of COPD. Methods: In two randomized, double-blind, placebo-controlled clinical trials patients with A) stable COPD (N=28, randomized 3:1) or B) AECOPD (N=44, randomized 1:1) received treatment with inhaled nemiralisib (1mg). Endpoints included induced sputum at various time points before and during treatment for the measurement of transcriptomics (primary endpoint), inflammatory mediators, functional respiratory imaging (FRI), and spirometry. Results: In stable COPD patients, the use of nemiralisib was associated with alterations in sputum neutrophil transcriptomics suggestive of an improvement in migration phenotype; however, the same nemiralisib-evoked effects were not observed in AECOPD. Inhibition of sputum inflammatory mediators was also observed in stable but not AECOPD patients. In contrast, a placebo-corrected improvement in forced expiratory volume in 1 sec of 136 mL (95% Credible Intervals -46, 315mL) with a probability that the true treatment ratio was >0% (Pr(θ>0)) of 93% was observed in AECOPD. However, FRI endpoints remained unchanged. Conclusion: We provide evidence for nemiralisib-evoked changes in neutrophil migration phenotype in stable COPD but not AECOPD, despite improving lung function in the latter group. We conclude that induced sputum can be used for measuring evidence of alteration of neutrophil phenotype in stable patients, and our study provides a data set of the sputum transcriptomic changes during recovery from AECOPD.


Assuntos
Fosfatidilinositol 3-Quinases , Doença Pulmonar Obstrutiva Crônica , Progressão da Doença , Volume Expiratório Forçado , Humanos , Fosfatidilinositol 3-Quinase , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Escarro
8.
Front Immunol ; 12: 671756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953730

RESUMO

Neutrophils, the most abundant circulating leukocytes in humans have key roles in host defense and in the inflammatory response. Agonist-activated phosphoinositide 3-kinases (PI3Ks) are important regulators of many facets of neutrophil biology. PIP3 is subject to dephosphorylation by several 5' phosphatases, including SHIP family phosphatases, which convert the PI3K product and lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) into PI(3,4)P2, a lipid second messenger in its own right. In addition to the leukocyte restricted SHIP1, neutrophils express the ubiquitous SHIP2. This study analyzed mice and isolated neutrophils carrying a catalytically inactive SHIP2, identifying an important regulatory function in neutrophil chemotaxis and directionality in vitro and in neutrophil recruitment to sites of sterile inflammation in vivo, in the absence of major defects of any other neutrophil functions analyzed, including, phagocytosis and the formation of reactive oxygen species. Mechanistically, this is explained by a subtle effect on global 3-phosphorylated phosphoinositide species. This work identifies a non-redundant role for the hitherto overlooked SHIP2 in the regulation of neutrophils, and specifically, neutrophil chemotaxis/trafficking. It completes an emerging wider understanding of the complexity of PI3K signaling in the neutrophil, and the roles played by individual kinases and phosphatases within.


Assuntos
Quimiotaxia de Leucócito/imunologia , Infiltração de Neutrófilos/imunologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Med Chem ; 63(2): 638-655, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31855425

RESUMO

Optimization of a lead series of PI3Kδ inhibitors based on a dihydroisobenzofuran core led to the identification of potent, orally bioavailable compound 19. Selectivity profiling of compound 19 showed similar potency for class III PI3K, Vps34, and PI3Kδ, and compound 19 was not well-tolerated in a 7-day rat toxicity study. Structure-based design led to an improvement in selectivity for PI3Kδ over Vps34 and, a focus on oral phramacokinetics properties resulted in the discovery of compound 41, which showed improved toxicological outcomes at similar exposure levels to compound 19.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Animais , Ligação Competitiva , Disponibilidade Biológica , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Isoenzimas , Modelos Moleculares , Simulação de Acoplamento Molecular , Inibidores de Fosfoinositídeo-3 Quinase/toxicidade , Ratos , Relação Estrutura-Atividade
10.
Sci Rep ; 9(1): 19085, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836766

RESUMO

Toll-like receptor 9 (TLR9) and Phosphatidylinositol-3-kinase gamma (PI3Kγ) are very important effectors of the immune response, however, the importance of such crosstalk for disease development is still a matter of discussion. Here we show that PI3Kγ is required for immune responses in which TLR9 is a relevant trigger. We demonstrate the requirement of PI3Kγ for TLR9-induced inflammation in a model of CpG-induced pleurisy. Such requirement was further observed in inflammatory models where DNA sensing via TLR9 contributes to disease, such as silicosis and drug-induced liver injury. Using adoptive transfer, we demonstrate that PI3Kγ is important not only in leukocytes but also in parenchymal cells for the progression of inflammation. We demonstrate this crosstalk between TLR9 and PI3Kγ in vitro using human PBMCs. The inhibition of PI3Kγ in CpG-stimulated PBMCs resulted in reduction of both cytokine production and phosphorylated Akt. Therefore, drugs that target PI3Kγ have the potential to treat diseases mediated by excessive TLR9 signalling.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Inflamação/patologia , Especificidade de Órgãos , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Feminino , Deleção de Genes , Inflamação/enzimologia , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/patologia , Pulmão/enzimologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Pleura/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Quinoxalinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício , Tiazolidinedionas/farmacologia
11.
Clin Exp Pharmacol Physiol ; 44(9): 932-940, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28508433

RESUMO

Lymphocyte numbers are increased in the lungs of chronic obstructive pulmonary disease (COPD) patients. Phosphatidylinositol-3-kinase delta (PI3Kδ) is involved in lymphocyte activation. We investigated the effect of PI3Kδ inhibition on cytokine release from COPD lymphocytes. We also evaluated phosphorylated ribosomal S6 protein (rS6) as a potential biomarker of PI3Kδ activation. Peripheral blood mononuclear cells (PBMCs) and bronchoalveolar lavage (BAL) cells isolated from healthy never smokers (HNS), smokers (S) and COPD patients were stimulated to induce a T cell receptor response. The effects of a PI3Kδ specific inhibitor (GSK045) on cytokine release and rS6 phosphorylation were measured by Luminex and flow cytometry respectively. The effects of GSK045 on cytokine production from PHA stimulated chopped lung samples were investigated. GSK045 reduced cytokine release from PBMCs, BAL cells and chopped lung. Inhibition was greatest in the chopped lung model, with approximately 80% inhibition of interferon (IFN) γ, interleukin (IL)-2, IL-17 and IL-10. PI3Kδ inhibition suppressed rS6 phosphorylation in unstimulated airway T-lymphocytes by up to 60%. Inhibition of PI3Kδ suppressed T cell cytokine production in COPD patients. rS6 phosphorylation shows potential as a biomarker to assess PI3Kδ activity.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Doença Pulmonar Obstrutiva Crônica/imunologia , Linfócitos T/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Biomarcadores/metabolismo , Lavagem Broncoalveolar , Citocinas/biossíntese , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Proteína S6 Ribossômica/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Am J Respir Crit Care Med ; 194(8): 961-973, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27064380

RESUMO

RATIONALE: Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease's complex pathophysiology, yet these cells have been little studied. OBJECTIVES: To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. METHODS: Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. MEASUREMENTS AND MAIN RESULTS: Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. CONCLUSIONS: Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase-dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of evaluating novel therapeutic strategies in patient-derived cells.


Assuntos
Neutrófilos/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Síndrome do Desconforto Respiratório/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Antígeno CD11b/metabolismo , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Selectina L/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Síndrome do Desconforto Respiratório/tratamento farmacológico
16.
J Med Chem ; 58(18): 7381-99, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26301626

RESUMO

Optimization of lead compound 1, through extensive use of structure-based design and a focus on PI3Kδ potency, isoform selectivity, and inhaled PK properties, led to the discovery of clinical candidates 2 (GSK2269557) and 3 (GSK2292767) for the treatment of respiratory indications via inhalation. Compounds 2 and 3 are both highly selective for PI3Kδ over the closely related isoforms and are active in a disease relevant brown Norway rat acute OVA model of Th2-driven lung inflammation.


Assuntos
Indazóis/química , Oxazóis/química , Inibidores de Fosfoinositídeo-3 Quinase , Doenças Respiratórias/tratamento farmacológico , Sulfonamidas/química , Administração por Inalação , Animais , Asma/tratamento farmacológico , Feminino , Humanos , Indazóis/farmacocinética , Indazóis/farmacologia , Indóis , Isoenzimas/antagonistas & inibidores , Masculino , Microssomos/metabolismo , Simulação de Acoplamento Molecular , Ovalbumina/imunologia , Oxazóis/farmacocinética , Oxazóis/farmacologia , Piperazinas , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Coelhos , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Células Th2/imunologia
17.
Lancet ; 385 Suppl 1: S55, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26312877

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is characterised by diffuse neutrophil-mediated alveolar inflammation. Recently, we demonstrated that blood polymorphonuclear leucocytes (PMNs) in ARDS are basally activated, and exhibit aberrant oxidative burst and survival responses. The molecular mechanisms governing ARDS PMN function and longevity are incompletely understood. We aimed to use genome-wide transcriptional profiling of ARDS blood PMNs to explore underlying disease mechanisms and identify therapeutic targets aimed at manipulating PMN function and longevity. METHODS: GeneChip Affymetrix oligonucleotide arrays were used to assess global transcriptional profiles in highly pure PMNs from ventilated patients fulfilling the Berlin ARDS definition (n=10), in freshly isolated PMNs from age-matched and sex-matched healthy volunteers (n=10), and in healthy volunteer PMNs exposed in vitro to recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF) (1 ng/mL for 6 h). Ingenuity Pathway Analysis software was used to map probes identified as important onto specific pathways. FINDINGS: Transcriptomic analysis showed that 1319 genes were altered in ARDS PMNs relative to healthy volunteer PMNs. Compared with well established reference databases, the gene expression profile in ARDS PMNs showed near-complete correlation to datasets derived from patients with sepsis and burns. Transcripts enriched in ARDS PMNs were differentially expressed in known functional network pathways associated with cancer, cellular compromise, apoptotic mechanisms, and chemotaxis. Of the observed gene changes, only 292 (22%) were seen in healthy volunteer PMNs after exposure to rhGM-CSF, of which 216 showed the same directional change as ARDS PMNs. INTERPRETATION: Existing genome-wide studies in ARDS use total blood leucocytes; our study is the first, to our knowledge, to use unbiased global genomic profiling of highly pure ARDS blood PMNs in parallel with age-matched and gender-matched healthy volunteer PMNs treated with rhGM-CSF. Collectively our results show that ARDS PMNs display important de-novo transcriptional activity. The global transcriptomic changes were consistent with the observed aberrant ARDS PMN survival and functional phenotype that we have previously reported, and show near-complete correlation to existing sepsis and burns datasets, but only limited transcriptomic overlap with healthy volunteer PMNs treated with rhGM-CSF. FUNDING: National Institute for Health Research, GlaxoSmithKline.

18.
Ann N Y Acad Sci ; 1280: 35-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23551101

RESUMO

Asthma and chronic obstructive pulmonary disease (COPD) are characterized in their pathogenesis by chronic inflammation in the airways. Phosphoinositide 3-kinase δ (PI3Kδ), a lipid kinase expressed predominantly in leukocytes, is thought to hold much promise as a therapeutic target for such inflammatory conditions. Of particular interest for the treatment of severe respiratory disease is the observation that inhibition of PI3Kδ may restore steroid effectiveness under conditions of oxidative stress. PI3Kδ inhibition may also prevent recruitment of inflammatory cells, including T lymphocytes and neutrophils, as well as the release of proinflammatory mediators, such as cytokines, chemokines, reactive oxygen species, and proteolytic enzymes. In addition, targeting the PI3Kδ pathway could reduce the incidence of pathogen-induced exacerbations by improving macrophage-mediated bacterial clearance. In this review, we discuss the potential and highlight the unknowns of targeting PI3Kδ for the treatment of respiratory disease, focusing on recent developments in the role of the PI3Kδ pathway in inflammatory cell types believed to be critical to the pathogenesis of COPD.


Assuntos
Asma/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Asma/enzimologia , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Macrófagos/metabolismo , Terapia de Alvo Molecular , Neutrófilos/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/metabolismo
19.
Biochem Soc Trans ; 40(1): 240-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260698

RESUMO

Chronic inflammation in the lung has long been linked to the pathogenesis of asthma. Central to this airway inflammation is a T-cell response to allergens, with Th2 cytokines driving the differentiation, survival and function of the major inflammatory cells involved in the allergic cascade. PI3Kδ (phosphoinositide 3-kinase δ) is a lipid kinase, expressed predominantly in leucocytes, where it plays a critical role in immune receptor signalling. A selective PI3Kδ inhibitor is predicted to block T-cell activation in the lung, reducing the production of pro-inflammatory Th2 cytokines. PI3Kδ is also involved in B-cell and mast cell activation. Therefore the inhibition of PI3Kδ should dampen down the inflammatory cascade involved in the asthmatic response through a wide breadth of pharmacology. Current anti-inflammatory therapies, which are based on corticosteroids, are effective in controlling inflammation in mild asthmatics, but moderate/severe asthmatic patients remain poorly controlled, experiencing recurrent exacerbations. Corticosteroids have no effect on mast cell degranulation and do not act directly on B-cells, so, overall, a PI3Kδ inhibitor has the potential to deliver improvements in onset of action, efficacy and reduced exacerbations in moderate/severe asthmatics. Additionally, PI3Kδ inhibition is expected to block effects of Th17 cells, which are increasingly implicated in steroid-insensitive asthma.


Assuntos
Asma/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Inflamação/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Asma/enzimologia , Asma/imunologia , Inibidores Enzimáticos/farmacologia , Humanos , Fatores Imunológicos/antagonistas & inibidores , Fatores Imunológicos/metabolismo , Inflamação/enzimologia , Inflamação/imunologia , Fosfatidilinositol 3-Quinases/metabolismo
20.
Methods Mol Biol ; 622: 435-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20135297

RESUMO

Tissue inhibitors of metalloproteinases (TIMPs) are a group of highly potent inhibitors of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs). The high affinity and "tight-binding" nature of the inhibition of MMPs or ADAMs by TIMPs presents challenges for the determination of both equilibrium and dissociation rate constants of these inhibitory events. Methodologies that enable some of these challenges to be overcome are described in this chapter and represent valuable lessons for the in vitro assessment of MMP or ADAM inhibitors within a drug discovery context.


Assuntos
Bioquímica/métodos , Inibidores de Metaloproteinases de Matriz , Inibidores Teciduais de Metaloproteinases/metabolismo , Animais , Humanos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...