Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(1)2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36680181

RESUMO

The causal relationship between HPV and cervical cancer in association with the high prevalence of high risk HPV genotypes led to the design of HPV vaccines based on the major capsid L1 protein. In recent years, capsid protein L2 has also become a focal point in the field of vaccine research. The present review focuses on the variability of HPV16 L1 and L2 genes, emphasizing the distribution of specific amino acid changes in the epitopes of capsid proteins. Moreover, a substantial bioinformatics analysis was conducted to describe the worldwide distribution of amino acid substitutions throughout HPV16 L1, L2 proteins. Five amino acid changes (T176N, N181T; EF loop), (T266A; FG loop), (T353P, T389S; HI loop) are frequently observed in the L1 hypervariable surface loops, while two amino acid substitutions (D43E, S122P) are adjacent to L2 specific epitopes. These changes have a high prevalence in certain geographic regions. The present review suggests that the extensive analysis of the amino acid substitutions in the HPV16 L1 immunodominant loops may provide insights concerning the ability of the virus in evading host immune response in certain populations. The genetic variability of the HPV16 L1 and L2 epitopes should be extensively analyzed in a given population.


Assuntos
Proteínas do Capsídeo , Proteínas Oncogênicas Virais , Humanos , Aminoácidos/genética , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Epitopos , Papillomavirus Humano 16/genética , Mutação , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/virologia
2.
Environ Res ; 200: 111749, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310965

RESUMO

A pilot study was conducted from late October 2020 until mid-April 2021, aiming to examine the association between SARS-CoV-2 RNA concentrations in untreated wastewater and recorded COVID-19 cases in two Greek municipalities. A population of Random Forest and Linear Regression Machine Learning models was trained and evaluated incorporating the concentrations of SARS-CoV-2 RNA in 111 wastewater samples collected from the inlets of two Wastewater Treatment Plants, along with physicochemical parameters of the wastewater influent. The model's predictions were adequately associated with the 7-day cumulative cases with the correlation coefficients (after 5-fold cross validation) ranging from 0.754 to 0.960 while the mean relative errors ranged from 30.42% to 59.46%. Our results provide indications that wastewater-based predictions can be applied in diverse settings and in prolonged time periods, although the accuracy of these predictions may be mitigated. Wastewater-based epidemiology can support and strengthen epidemiological surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Cidades , Grécia , Humanos , Projetos Piloto , RNA Viral , Águas Residuárias
3.
Antibiotics (Basel) ; 10(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068740

RESUMO

Bee bread is the only fermented product of the beehive. It constitutes the main source of proteins, lipids, vitamins, and macro- and microelements in honeybee nutrition and it exerts antioxidant and antimicrobial properties, though research on these aspects has been limited so far. In this study 18 samples of Greek bee bread, two of which were monofloral, were collected during different seasons from diverse locations such as Crete and Mount Athos and were tested for their bioactivity. Samples were analyzed for their antibacterial properties, antioxidant activity, total phenolic content (TPC), and total flavonoid content (TFC). The antimicrobial activity of each sample was tested against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella typhimurium. Our data demonstrate that all samples exert inhibitory and most of them bactericidal activity against at least two pathogens. Furthermore, all samples exert significant antioxidant activity, where the monofloral Castanea Sativa sample demonstrated superior antioxidant activity. Nevertheless, the antioxidant and antimicrobial activity were not strongly correlated. Furthermore, machine learning methods demonstrated that the palynological composition of the samples is a good predictor of their TPC and ABTS activity. This is the first study that focuses on the biological properties of Greek bee bread and demonstrates that bee bread can be considered a functional food and a possible source of novel antimicrobial compounds.

4.
Molecules ; 26(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946997

RESUMO

The aim of the present study was to compare the efficiency of targeted and untargeted breath analysis in the discrimination of lung cancer (Ca+) patients from healthy people (HC) and patients with benign pulmonary diseases (Ca-). Exhaled breath samples from 49 Ca+ patients, 36 Ca- patients and 52 healthy controls (HC) were analyzed by an SPME-GC-MS method. Untargeted treatment of the acquired data was performed with the use of the web-based platform XCMS Online combined with manual reprocessing of raw chromatographic data. Machine learning methods were applied to estimate the efficiency of breath analysis in the classification of the participants. Results: Untargeted analysis revealed 29 informative VOCs, from which 17 were identified by mass spectra and retention time/retention index evaluation. The untargeted analysis yielded slightly better results in discriminating Ca+ patients from HC (accuracy: 91.0%, AUC: 0.96 and accuracy 89.1%, AUC: 0.97 for untargeted and targeted analysis, respectively) but significantly improved the efficiency of discrimination between Ca+ and Ca- patients, increasing the accuracy of the classification from 52.9 to 75.3% and the AUC from 0.55 to 0.82. Conclusions: The untargeted breath analysis through the inclusion and utilization of newly identified compounds that were not considered in targeted analysis allowed the discrimination of the Ca+ from Ca- patients, which was not achieved by the targeted approach.


Assuntos
Biomarcadores , Testes Respiratórios/métodos , Pneumopatias/diagnóstico , Neoplasias Pulmonares/diagnóstico , Idoso , Estudos de Casos e Controles , Diagnóstico Diferencial , Suscetibilidade a Doenças , Expiração , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Pneumopatias/etiologia , Pneumopatias/metabolismo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Compostos Orgânicos Voláteis/análise
5.
Nucleic Acids Res ; 49(W1): W573-W577, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33963869

RESUMO

Bottom-up proteomics analyses have been proved over the last years to be a powerful tool in the characterization of the proteome and are crucial for understanding cellular and organism behaviour. Through differential proteomic analysis researchers can shed light on groups of proteins or individual proteins that play key roles in certain, normal or pathological conditions. However, several tools for the analysis of such complex datasets are powerful, but hard-to-use with steep learning curves. In addition, some other tools are easy to use, but are weak in terms of analytical power. Previously, we have introduced ProteoSign, a powerful, yet user-friendly open-source online platform for protein differential expression/abundance analysis designed with the end-proteomics user in mind. Part of Proteosign's power stems from the utilization of the well-established Linear Models For Microarray Data (LIMMA) methodology. Here, we present a substantial upgrade of this computational resource, called ProteoSign v2, where we introduce major improvements, also based on user feedback. The new version offers more plot options, supports additional experimental designs, analyzes updated input datasets and performs a gene enrichment analysis of the differentially expressed proteins. We also introduce the deployment of the Docker technology and significantly increase the speed of a full analysis. ProteoSign v2 is available at http://bioinformatics.med.uoc.gr/ProteoSign.


Assuntos
Proteômica/métodos , Software , Interpretação Estatística de Dados , Internet , Espectrometria de Massas , Proteínas/genética , Proteínas/metabolismo
6.
Foods ; 10(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923242

RESUMO

Pine honey is a unique type of honeydew honey produced exclusively in Eastern Mediterranean countries like Greece and Turkey. Although the antioxidant and anti-inflammatory properties of pine honey are well documented, few studies have investigated so far its antibacterial activity. This study investigates the antibacterial effects of pine honey against P. aeruginosa PA14 at the molecular level using a global transcriptome approach via RNA-sequencing. Pine honey treatment was applied at sub-inhibitory concentration and short exposure time (0.5× of minimum inhibitory concentration -MIC- for 45 min). Pine honey induced the differential expression (>two-fold change and p ≤ 0.05) of 463 genes, with 274 of them being down-regulated and 189 being up-regulated. Gene ontology (GO) analysis revealed that pine honey affected a wide range of biological processes (BP). The most affected down-regulated BP GO terms were oxidation-reduction process, transmembrane transport, proteolysis, signal transduction, biosynthetic process, phenazine biosynthetic process, bacterial chemotaxis, and antibiotic biosynthetic process. The up-regulated BP terms, affected by pine honey treatment, were those related to the regulation of DNA-templated transcription, siderophore transport, and phosphorylation. Pathway analysis revealed that pine honey treatment significantly affected two-component regulatory systems, ABC transporter systems, quorum sensing, bacterial chemotaxis, biofilm formation and SOS response. These data collectively indicate that multiple mechanisms of action are implicated in antibacterial activity exerted by pine honey against P. aeruginosa.

7.
Antibiotics (Basel) ; 9(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202560

RESUMO

Bee-collected pollen (BCP) is a well-known functional food. Honey bees process the collected pollen and store it in the hive, inside the comb cells. The processed pollen is called bee- bread or ambrosia and it is the main source of proteins, lipids, vitamins, macro-and micro-elements in honey bee nutrition. During storage, beebread undergoes solid state fermentation which preserves it and increases the bioavailability of nutrients. Research on beebread has been rather limited until now. In recent years, there is an increasing interest regarding the antimicrobial properties of BCP and beebread, due to emerging antimicrobial resistance by pathogens. Both BCP and beebread exhibit antimicrobial properties against diverse pathogens, like bacteria and fungi. As is the case with other bee products, lack of antimicrobial resistance might be attributed to the synergy of more than one antimicrobial compounds within BCP and beebread. Furthermore, BCP and bee bread exert targeted activity against pathogens and affect the host microbiome in a prebiotic manner. This review aims to present up to date research findings regarding these aspects as well as to discuss current challenges and future perspectives in the field.

8.
J Exp Bot ; 71(10): 3110-3125, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32016431

RESUMO

Monosaccharide transporters (MSTs) represent key components of the carbon transport and partitioning mechanisms in plants, mediating the cell-to-cell and long-distance distribution of a wide variety of monosaccharides. In this study, we performed a thorough structural, molecular, and physiological characterization of the monosaccharide transporter gene family in the model legume Medicago truncatula. The complete set of MST family members was identified with a novel bioinformatic approach. Prolonged darkness was used as a test condition to identify the relevant transcriptomic and metabolic responses combining MST transcript profiling and metabolomic analysis. Our results suggest that MSTs play a pivotal role in the efficient partitioning and utilization of sugars, and possibly in the mechanisms of carbon remobilization in nodules upon photosynthate-limiting conditions, as nodules are forced to acquire a new role as a source of both C and N.


Assuntos
Medicago truncatula , Carbono/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Membrana Transportadoras , Monossacarídeos , Fixação de Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose
9.
Front Microbiol ; 11: 600393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510723

RESUMO

Bacillus spp. MBI 600 is a gram-positive bacterium and is characterized as a PGPR strain involved in plant growth promotion and control of various plant pathogens which has recently been introduced into the agricultural practice. In this study we performed a Next Generation Sequencing analysis, to analyze the full genome of this microorganism and to characterize it taxonomically. Results showed that MBI 600 strain was phylogenetically close to other Bacillus spp. strains used as biocontrol agents and identified as B. subtilis. GOG analysis showed clusters contributed to secondary metabolites production such as fengycin and surfactin. In addition, various genes which annotated according to other plant-associated strains, showed that play a main role in nutrient availability from soil. The root colonization ability of MBI 600 strain was analyzed in vivo with a yellow fluorescence protein (yfp) tag. Confocal laser scanning microscopy of cucumber roots treated with yfp-tagged MBI 600 cells, revealed that the strain exhibits a strong colonization ability of cucumber roots, although it is affected significantly by the growth substrate of the roots. In vitro and in planta experiments with MBI 600 strain and F. oxysporum f.sp. radicis cucumerinum and P. aphanidernatum, showed a high control ability against these soilborne pathogens. Overall, our study demonstrates the effectiveness of MBI 600 in plant growth promotion and antagonism against different pathogens, highlighting the use of this microorganism as a biocontrol agent.

10.
NAR Genom Bioinform ; 2(1): lqaa005, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575553

RESUMO

The in-depth study of protein-protein interactions (PPIs) is of key importance for understanding how cells operate. Therefore, in the past few years, many experimental as well as computational approaches have been developed for the identification and discovery of such interactions. Here, we present UniReD, a user-friendly, computational prediction tool which analyses biomedical literature in order to extract known protein associations and suggest undocumented ones. As a proof of concept, we demonstrate its usefulness by experimentally validating six predicted interactions and by benchmarking it against public databases of experimentally validated PPIs succeeding a high coverage. We believe that UniReD can become an important and intuitive resource for experimental biologists in their quest for finding novel associations within a protein network and a useful tool to complement experimental approaches (e.g. mass spectrometry) by producing sorted lists of candidate proteins for further experimental validation. UniReD is available at http://bioinformatics.med.uoc.gr/unired/.

11.
Nucleic Acids Res ; 47(19): 9998-10009, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31504783

RESUMO

We provide the first high-throughput analysis of the properties and functional role of Low Complexity Regions (LCRs) in more than 1500 prokaryotic and phage proteomes. We observe that, contrary to a widespread belief based on older and sparse data, LCRs actually have a significant, persistent and highly conserved presence and role in many and diverse prokaryotes. Their specific amino acid content is linked to proteins with certain molecular functions, such as the binding of RNA, DNA, metal-ions and polysaccharides. In addition, LCRs have been repeatedly identified in very ancient, and usually highly expressed proteins of the translation machinery. At last, based on the amino acid content enriched in certain categories, we have developed a neural network web server to identify LCRs and accurately predict whether they can bind nucleic acids, metal-ions or are involved in chaperone functions. An evaluation of the tool showed that it is highly accurate for eukaryotic proteins as well.


Assuntos
Evolução Molecular , Ensaios de Triagem em Larga Escala/métodos , Proteoma/genética , RNA/genética , Aminoácidos/genética , DNA/genética , Células Eucarióticas/metabolismo , Células Procarióticas/metabolismo , Domínios Proteicos/genética , Proteínas/genética , RNA/química , Alinhamento de Sequência
12.
Virology ; 526: 72-80, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30366300

RESUMO

Recombination is a driving force for the emergence, evolution and virulence/epidemics of viruses, comprising the Enterovirus genus of the Picornaviridae family, important for human and animal health. By analyzing 2949 complete genomes/coding sequences, we provide a thorough and up-to-date overview of the genome-wide patterns and hotspots of intertypic recombination between the genogroups of this genus. Two prominent recombination hotspots are identified/verified, at the 5'UTR-capsid region junction, and at the beginning of the P2 region. In general, P2 was enriched in recombination events. Key phylogenetic groups implicated in recombination events are E71 and CVA6 in Enterovirus A species, E30 and E6 in Enterovirus B species, polioviruses 1 and 2 in Enterovirus C species. In addition, many events involve recombination partners that have not been sequenced yet, thus strongly suggesting a large environmental reservoir of genetic variation with a high potential for the emergence of new modified pathogens by recombination.


Assuntos
Enterovirus/genética , Evolução Molecular , Genoma Viral/genética , Recombinação Genética , Regiões 5' não Traduzidas/genética , Proteínas do Capsídeo/genética , Bases de Dados Genéticas , Enterovirus/classificação , Genótipo , Humanos , Filogenia , Rhinovirus/classificação , Rhinovirus/genética , Proteínas não Estruturais Virais/genética
13.
Microbiologyopen ; 7(5): e00596, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29484839

RESUMO

Paper documents in archives, libraries, and museums often undergo biodeterioration by microorganisms. Fungi and less often bacteria have been described to advance paper staining, so called "foxing" and degradation of paper substrates. In this study, for the first time, the fungal and bacterial diversity in biodeteriorated paper documents of Hellenic General State Archives dating back to the 19th and 20th century has been assessed by culture-dependent and independent methods. The internally transcribed spacer (ITS) region and 16S rRNA gene were amplified by PCR from fungal and bacterial isolates and amplicons were sequenced. Sequence analysis and phylogeny revealed fungal phylotypes like Penicillium sp., Cladosporium sp., Penicillium citrinum, Alternaria infectoria, Alternaria alternata, Epicoccum nigrum, and Penicillium chrysogenum which are often implicated in paper deterioration. Bacterial phylotypes closely related to known biodeteriogenic bacteria such as Bacillus spp., Micrococcus spp., Kocuria sp. in accordance with previous studies were characterized. Among the fungal phylotypes described in this study are included well-known allergens such as Penicillium spp., Alternaria spp., and Cladosporium spp. that impose a serious health threat on staff members and scholars. Furthermore, fungal isolates such as Chalastospora gossypii and Trametes ochracea have been identified and implicated in biodeterioration of historical paper manuscripts in this study for the first time. Certain new or less known fungi and bacteria implicated in paper degradation were retrieved, indicating that particular ambient conditions, substrate chemistry, or even location might influence the composition of colonizing microbiota.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Microbiologia Ambiental , Fungos/classificação , Fungos/isolamento & purificação , Papel , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Intergênico/química , DNA Intergênico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fungos/genética , Fungos/crescimento & desenvolvimento , Grécia , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
J Med Virol ; 90(5): 965-971, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29168898

RESUMO

The tumor suppressor protein p16 plays a fundamental role in cell cycle regulation and exerts a protective effect against tumor growth. Two different polymorphisms at positions 540 and 580 at the 3'UTR of exon 3 of p16 gene are implicated in several types of cancer, while their role in cervical cancer development remains rather vague. In the present study, we investigated for the impact of p16 genotypes/haplotypes on patients' vulnerability to cervical disease and examined whether these factors can be used as progression markers in the Greek population. A total of 96 HPV16 positive samples and histologically confirmed as LSIL (42 samples), HSIL (44 samples), and cervical cancer cases (10 samples) along with 50 control cases were tested. The identification of p16 polymorphisms was performed by PCR-RFLP methodology. The present analysis revealed that women with p16 540 CG/GG genotype are at a 2.7-fold higher risk of developing HPV16-associated HSIL (OR = 2.7, 95%CI: 1.01-6.6, P = 0.028). The G allele can be regarded as a risk factor of developing HSIL in the Greek population (OR = 2.7, 95%CI: 1.2-5.9, P = 0.012). Moreover, p16 polymorphism C580T is not associated with the growth of cervical lesion in Greek patients, while 540G/580C haplotype can be regarded as a risk haplotype of developing HSIL (OR = 3.67, 95%CI: 1.56-8.6, P = 0.0019). Our results demonstrated that p16 C540G polymorphism influence patients' susceptibility to more severe dysplasia and consequently this polymorphism could potentially emerge as a valuable biomarker for HSIL development in the Greek population.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Predisposição Genética para Doença , Papillomavirus Humano 16/isolamento & purificação , Lesões Intraepiteliais Escamosas Cervicais/epidemiologia , Lesões Intraepiteliais Escamosas Cervicais/genética , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/genética , Adulto , Feminino , Genótipo , Grécia/epidemiologia , Humanos , Pessoa de Meia-Idade , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Estudos Prospectivos
15.
Arch Virol ; 163(2): 365-375, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29086105

RESUMO

Recombination has been recognized as a major mechanism of evolution in enteroviruses. The Echovirus 30 (E-30) strain Gior was sequenced and phylogenetically compared to all available E-30 sequences to detect recombination events between the 5΄UTR and VP1 genomic regions. The comparison of phylogenetic trees of the 5΄UTR and VP1 revealed incongruences concerning strains, lineages and sub-lineages. Comparative analysis of 62 E-30 sub-genomic sequences revealed six different recombination events that almost all occurred in the same region, having a start point in the 3΄end of the 5΄ UTR and end point in VP4. The only exception was the sub-lineage of Gior for which both borders of recombination were located in the 5΄UTR. These results describe for the first time recombination events in this region in circulating EV-B strains, revealing the exact points of these recombination events, highlighting the impact of such events on the evolution and epidemiology of enteroviruses.


Assuntos
Infecções por Echovirus/virologia , Enterovirus Humano B/genética , Recombinação Genética , Proteínas Virais/genética , Regiões 5' não Traduzidas , Enterovirus Humano B/classificação , Enterovirus Humano B/isolamento & purificação , Enterovirus Humano B/fisiologia , Evolução Molecular , Genoma Viral , Humanos , Filogenia , RNA Viral/genética , Sorogrupo , Proteínas Virais/metabolismo
16.
Gigascience ; 6(2): 1-11, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327990

RESUMO

BACKGROUND: Phosphorylation is the most frequent post-translational modification made to proteins and may regulate protein activity as either a molecular digital switch or a rheostat. Despite the cornucopia of high-throughput (HTP) phosphoproteomic data in the last decade, it remains unclear how many proteins are phosphorylated and how many phosphorylation sites (p-sites) can exist in total within a eukaryotic proteome. We present the first reliable estimates of the total number of phosphoproteins and p-sites for four eukaryotes (human, mouse, Arabidopsis, and yeast). RESULTS: In all, 187 HTP phosphoproteomic datasets were filtered, compiled, and studied along with two low-throughput (LTP) compendia. Estimates of the number of phosphoproteins and p-sites were inferred by two methods: Capture-Recapture, and fitting the saturation curve of cumulative redundant vs. cumulative non-redundant phosphoproteins/p-sites. Estimates were also adjusted for different levels of noise within the individual datasets and other confounding factors. We estimate that in total, 13 000, 11 000, and 3000 phosphoproteins and 230 000, 156 000, and 40 000 p-sites exist in human, mouse, and yeast, respectively, whereas estimates for Arabidopsis were not as reliable. CONCLUSIONS: Most of the phosphoproteins have been discovered for human, mouse, and yeast, while the dataset for Arabidopsis is still far from complete. The datasets for p-sites are not as close to saturation as those for phosphoproteins. Integration of the LTP data suggests that current HTP phosphoproteomics appears to be capable of capturing 70 % to 95 % of total phosphoproteins, but only 40 % to 60 % of total p-sites.


Assuntos
Células Eucarióticas/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Proteômica , Animais , Arabidopsis , Humanos , Camundongos , Fosfoproteínas/química , Fosforilação , Proteômica/métodos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae
17.
BMC Bioinformatics ; 18(1): 13, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056784

RESUMO

BACKGROUND: Many computational tools that detect recombination in viruses are not adapted for the ongoing genomic revolution. A computational tool is needed, that will rapidly scan hundreds/thousands of genomes or sequence fragments and detect candidate recombination events that may later be further analyzed with more sensitive and specialized methods. RESULTS: T-RECs, a Windows based graphical tool, employs pairwise alignment of sliding windows and can perform (i) genotyping, (ii) clustering of new genomes, (iii) detect recent recombination events among different evolutionary lineages, (iv) manual inspection of detected recombination events by similarity plots and (v) annotation of genomic regions. CONCLUSIONS: T-RECs is very effective, as demonstrated by an analysis of 555 Norovirus complete genomes and 2500 sequence fragments, where a recombination hotspot was identified at the ORF1-ORF2 junction.


Assuntos
Genoma Viral , Norovirus/genética , Recombinação Genética , Análise por Conglomerados , Fragmentação do DNA , DNA Viral/genética , Bases de Dados Genéticas , Evolução Molecular , Técnicas de Genotipagem , Alinhamento de Sequência , Análise de Sequência de DNA , Software
18.
PLoS One ; 11(7): e0159939, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27459096

RESUMO

The European brown hare (Lepus europaeus, Pallas 1778) is an important small game species in Europe. Due to its size and position in the food chain, as well as its life history, phenotypic variation and the relatively recent speciation events, brown hare plays an important role in the structure of various ecosystems and has emerged as an important species for population management and evolutionary studies. In order to identify informative SNPs for such studies, heart and liver tissues of three samples from the European lineage and a three-sample pool from the Anatolian lineage were subjected to RNA-Sequencing analysis. This effort resulted in 9496 well-assembled protein-coding sequences with close homology to human. After applying very stringent filtering criteria, 66185 polymorphic sites were identified in 7665 genes/cds and 2050 of those polymorphic sites are potentially capable of distinguishing the European from the Anatolian lineage. From these distinguishing mutations we focused on those in genes that are involved in cellular energy production, namely the glycolysis, Krebs cycle and the OXPHOS machinery. A selected set of SNPs was also validated by Sanger sequencing. By simulating the three European individuals as one pool, no substantial informative-SNP identification was lost, making it a cost-efficient approach. To our knowledge this is the first attempt to correlate the differentiation in both nuclear and mitochondrial genome between the two different lineages of L. europaeus with the observed spatial partitioning of the lineages of the species, proposing a possible mechanism that is maintaining the reproductive isolation of the lineages.


Assuntos
Metabolismo Energético , Lebres/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Animais , Especiação Genética , Lebres/classificação , Lebres/metabolismo , Mutação
19.
Viral Immunol ; 29(7): 444-50, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27410516

RESUMO

Mutations and recombination events have been identified in enteroviruses. Point mutations accumulate with a frequency of 6.3 × 10(-4) per base pair per replication cycle affecting the fitness, the circulation, and the infectivity of enteroviral strains. In the present report, the serological status of the Central and Western Greek population (Larissa and Ioannina, respectively) in the 1-10-year, 11-20-year, 21-30-year, and 31-40-year age groups against six non-polio enterovirus strains, their respective echovirus prototypes, and Sabin 1, 2, and 3 vaccine strains was evaluated, through serum-neutralization assay. In the Western Greek population, antibody levels were detected only for clinical isolates of E30 serotype in all age groups, and for environmental isolate LR61G3 (E6 serotype) only in the 31-40 age group, whereas an immunity level was observed in the Central Greek population, against all strains, except for EIS6B (E3 serotype). Amino acid substitutions were encountered across the structural region of the capsid, between the prototypes and the respective isolates. These substitutions may alter the antigenicity of each strain and may explain the variations observed in the neutralization titers of the different strains. As a consequence, these substitutions severely affect antibody binding and increase the ability of the virus to escape the immune response. It is tempting to assume that changes in the antigenic properties observed in circulating echoviruses represent a selection of viral variants that are less prone to be neutralized by human antibodies. These facts argue for the need of immunological studies to the population to avoid epidemics due to the circulation of highly evolved derivatives.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Infecções por Enterovirus/epidemiologia , Enterovirus/imunologia , Testes de Neutralização/métodos , Adolescente , Adulto , Substituição de Aminoácidos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Criança , Pré-Escolar , Enterovirus/genética , Infecções por Enterovirus/imunologia , Grécia/epidemiologia , Humanos , Lactente , Estudos Soroepidemiológicos , Adulto Jovem
20.
Mar Drugs ; 14(4)2016 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-27092515

RESUMO

Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.


Assuntos
Fatores Biológicos/biossíntese , Microbiota/fisiologia , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Biodiversidade , Fatores Biológicos/metabolismo , Humanos , Metagenômica/métodos , Policetídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...