Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 22(10): 4264-4278, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32219965

RESUMO

A major debate in evolutionary biology is whether virulence is maintained as an adaptive trait and/or evolves to non-virulence. In the environment, virulence traits of non-obligatory parasites are subjected to diverse selective pressures and trade-offs. Here, we focus on a population of Vibrio splendidus that displays moderate virulence for oysters. A MARTX (Multifunctional-autoprocessing repeats-in-toxin) and a type-six secretion system (T6SS) were found to be necessary for virulence toward oysters, while a region (wbe) involved in O-antigen synthesis is necessary for resistance to predation against amoebae. Gene inactivation within the wbe region had major consequences on the O-antigen structure, conferring lower immunogenicity, competitive advantage and increased virulence in oyster experimental infections. Therefore, O-antigen structures that favour resistance to environmental predators result in an increased activation of the oyster immune system and a reduced virulence in that host. These trade-offs likely contribute to maintaining O-antigen diversity in the marine environment by favouring genomic plasticity of the wbe region. The results of this study indicate an evolution of V. splendidus towards moderate virulence as a compromise between fitness in the oyster as a host, and resistance to its predators in the environment.


Assuntos
Antígenos O/metabolismo , Ostreidae/microbiologia , Sistemas de Secreção Tipo VI/genética , Vibrio/patogenicidade , Amoeba/metabolismo , Animais , Cadeia Alimentar , Antígenos O/imunologia , Ostreidae/imunologia , Alimentos Marinhos/microbiologia , Vibrio/imunologia , Virulência/genética , Virulência/fisiologia
2.
Environ Microbiol ; 22(10): 4183-4197, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31386262

RESUMO

Vibrios are ubiquitous in marine environments and opportunistically colonize a broad range of hosts. Strains of Vibrio tasmaniensis present in oyster farms can thrive in oysters during juvenile mortality events and behave as facultative intracellular pathogen of oyster haemocytes. Herein, we wondered whether V. tasmaniensis LGP32 resistance to phagocytosis is specific to oyster immune cells or contributes to resistance to other phagocytes, like marine amoebae. To address this question, we developed an integrative study, from the first description of amoeba diversity in oyster farms to the characterization of LGP32 interactions with amoebae. An isolate of the Vannella genus, Vannella sp. AP1411, which was collected from oyster farms, is ubiquitous, and belongs to one clade of Vannella that could be found associated with Vibrionaceae. LGP32 was shown to be resistant to grazing by Vannella sp. AP1411 and this phenotype depends on some previously identified virulence factors: secreted metalloprotease Vsm and copper efflux p-ATPase CopA, which act at different steps during amoeba-vibrio interactions, whereas some other virulence factors were not involved. Altogether, our work indicates that some virulence factors can be involved in multi-host interactions of V. tasmaniensis ranging from protozoans to metazoans, potentially favouring their opportunistic behaviour.


Assuntos
Amebozoários/fisiologia , Ostreidae/microbiologia , Vibrio/fisiologia , Amoeba/fisiologia , Animais , Proteínas de Bactérias/genética , Comportamento Predatório , Vibrio/genética , Vibrio/patogenicidade , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...