Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15428, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965257

RESUMO

Leaf rust (LR) caused by Puccinia hordei is a serious disease of barley worldwide, causing significant yield losses and reduced grain quality. Discovery and incorporation of new sources of resistance from gene bank accessions into barley breeding programs is essential for the development of leaf rust resistant varieties. To identify Quantitative Trait Loci (QTL) conferring LR resistance in the two barley subsets, the Generation Challenge Program (GCP) reference set of 142 accessions and the leaf rust subset constructed using the Focused Identification of Germplasm Strategy (FIGS) of 76 barley accessions, were genotyped to conduct a genome-wide association study (GWAS). The results revealed a total of 59 QTL in the 218 accessions phenotyped against barley leaf rust at the seedling stage using two P. hordei isolates (ISO-SAT and ISO-MRC), and at the adult plant stage in four environments in Morocco. Out of these 59 QTL, 10 QTL were associated with the seedling resistance (SR) and 49 QTL were associated with the adult plant resistance (APR). Four QTL showed stable effects in at least two environments for APR, whereas two common QTL associated with SR and APR were detected on chromosomes 2H and 7H. Furthermore, 39 QTL identified in this study were potentially novel. Interestingly, the sequences of 27 SNP markers encoded the candidate genes (CGs) with predicted protein functions in plant disease resistance. These results will provide new perspectives on the diversity of leaf rust resistance loci for fine mapping, isolation of resistance genes, and for marker-assisted selection for the LR resistance in barley breeding programs worldwide.


Assuntos
Resistência à Doença , Estudo de Associação Genômica Ampla , Hordeum , Doenças das Plantas , Locos de Características Quantitativas , Plântula , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plântula/genética , Plântula/microbiologia , Resistência à Doença/genética , Puccinia/patogenicidade , Genótipo , Polimorfismo de Nucleotídeo Único , Fenótipo , Basidiomycota , Mapeamento Cromossômico , Melhoramento Vegetal
2.
Front Plant Sci ; 14: 1133404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089788

RESUMO

Barley is an important crop worldwide known for its adaptation to harsh environments and used in multiple forms as feed, food and beverages. Its productivity is affected by major abiotic and biotic stresses. Scald caused by hemibiotrophic fungus Rhynchosporium commune is a major foliar disease in many parts of the world. Host plant resistance is targeted by breeders to efficiently control this disease. An association mapping panel of 316 spring barley genotypes (AM2017) was screened for seedling resistance in greenhouse against three R. commune isolates and for adult plant resistance in three field locations in Morocco. The phenotyping results showed different numbers of entries with resistant and moderately resistant reactions at both seedling and adult plant stages. The reactions differed between the isolates with the highest percentage of resistant genotypes observed for isolate SC-S611 (49.4%) and highest percentage of susceptible genotypes (73.8%) for isolate SC-1122. At adult plant stage, the highest percentage of scald resistant genotypes (64.5%) was observed at Rommani site compared to 56% at Guich site and only 28.8% at Marchouch site. Seven genotypes were resistant at the seedling and adult plant stages. Genome wide association study (GWAS) revealed 102 MTA (15 QTL) at the seedling stage, and 25 MTA (12 QTL) associated with scald resistance at the adult plant stage. In addition, the sequences of 92 out of 102 at SRT, and 24 out of 25 significant SNP markers at APR were located in genomic regions enriched with functional proteins involved in diverse cellular processes including disease resistance. These markers span over all chromosomes with the majority of SNPs located on 3H and 7H. This study has verified 18 QTL reported in previous studies. In addition, it was successful in identifying new sources of resistance and novel genomic regions which could help in enhancing scald resistance in barley breeding programs.

3.
Front Nutr ; 10: 1204572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899827

RESUMO

Although barley is mainly used for livestock feed and beverages, its use as human feed can enrich human diets with some health benefits. The development of new hulless varieties rich in ß-glucans and micronutrients can enhance the use of barley as food, but little is known about the effects of the environment on these nutritional traits. In this study, we evaluated five Moroccan varieties and two elite breeding lines of barley at four locations in Morocco during the 2016-2017 and 2017-2018 cropping seasons. The results showed highly significant differences between genotypes for ß-glucan, protein, iron, and selenium contents, as well as 1000 kernel weight, but not zinc content; significant to highly significant differences between environments for all traits except ß-glucan content; and significant to highly significant interactions for all traits. The highest level of ß-glucan content has reached 11.57% observed at the Sidi El Aydi site during the growing season 2017-2018 for the hulless variety Chifaa. This variety has shown the highest content of ß-glucan (6.2-11.57%) over all environments except at Tassaout during the 2016-2017 seasons. The breeding line M9V5 has achieved significantly higher protein content at all the locations during the two growing seasons, ranging from 12.38 to 20.14%. Most hulless lines had significantly higher ß-glucan and protein contents, but lower 1000 kernel weight. For micronutrients, the content ranges were 28.94 to 38.23 ppm for Fe, 28.78 to 36.49 ppm for Zn, and 0.14 to 0.18 ppm for Se, with the highest content for Fe and Zn shown by the breeding line M9V5 and Chifaa showing average contents of 33.39 ppm, 35.34 ppm, and 0.18 ppm for Fe, Zn, and Se, respectively. The GGE biplot confirmed the high and relatively stable content of ß-glucan and acceptable micronutrient contents of the Chifaa variety and identified Marchouch as the most discriminant site to breed for biofortified barley varieties.

4.
Front Plant Sci ; 14: 1227656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701801

RESUMO

Genome-wide prediction is a powerful tool in breeding. Initial results suggest that genome-wide approaches are also promising for enhancing the use of the genebank material: predicting the performance of plant genetic resources can unlock their hidden potential and fill the information gap in genebanks across the world and, hence, underpin prebreeding programs. As a proof of concept, we evaluated the power of across-genebank prediction for extensive germplasm collections relying on historical data on flowering/heading date, plant height, and thousand kernel weight of 9,344 barley (Hordeum vulgare L.) plant genetic resources from the German Federal Ex situ Genebank for Agricultural and Horticultural Crops (IPK) and of 1,089 accessions from the International Center for Agriculture Research in the Dry Areas (ICARDA) genebank. Based on prediction abilities for each trait, three scenarios for predictive characterization were compared: 1) a benchmark scenario, where test and training sets only contain ICARDA accessions, 2) across-genebank predictions using IPK as training and ICARDA as test set, and 3) integrated genebank predictions that include IPK with 30% of ICARDA accessions as a training set to predict the rest of ICARDA accessions. Within the population of ICARDA accessions, prediction abilities were low to moderate, which was presumably caused by a limited number of accessions used to train the model. Interestingly, ICARDA prediction abilities were boosted up to ninefold by using training sets composed of IPK plus 30% of ICARDA accessions. Pervasive genotype × environment interactions (GEIs) can become a potential obstacle to train robust genome-wide prediction models across genebanks. This suggests that the potential adverse effect of GEI on prediction ability was counterbalanced by the augmented training set with certain connectivity to the test set. Therefore, across-genebank predictions hold the promise to improve the curation of the world's genebank collections and contribute significantly to the long-term development of traditional genebanks toward biodigital resource centers.

5.
Plants (Basel) ; 12(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765350

RESUMO

Barley is a very important crop particularly in marginal dry areas, where it often serves as the most viable option for farmers. Additionally, barley carries great significance in the Western world, serving not only as a fundamental crop for animal feed and malting but also as a nutritious food source. The broad adaptability of barley and its ability to withstand various biotic and abiotic stresses often make this species the sole cereal that can be cultivated in arid regions. The collection and utilization of barley genetic resources are crucial for identifying valuable traits to enhance productivity and mitigate the adverse effects of climate change. This review aims to provide an overview of the management and exploitation of barley genetic resources. Furthermore, the review explores the relationship between gene banks and participatory breeding, offering insights into the diversity and utilization of barley genetic resources through some examples such as the initiatives undertaken by ICARDA. Finally, this contribution highlights the importance of these resources for boosting barley productivity, addressing climate change impacts, and meeting the growing food demands in a rapidly changing agriculture. The understanding and utilizing the rich genetic diversity of barley can contribute to sustainable agriculture and ensure the success of this vital crop for future generations globally.

6.
Data Brief ; 48: 109230, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383825

RESUMO

The grapevine is vulnerable to diseases, deficiencies, and pests, leading to significant yield losses. Current disease controls involve monitoring and spraying phytosanitary products at the vineyard block scale. However, automatic detection of disease symptoms could reduce the use of these products and treat diseases before they spread. Flavescence dorée (FD), a highly infectious disease that causes significant yield losses, is only diagnosed by identifying symptoms on three grapevine organs: leaf, shoot, and bunch. Its diagnosis is carried out by scouting experts, as many other diseases and stresses, either biotic or abiotic, imply similar symptoms (but not all at the same time). These experts need a decision support tool to improve their scouting efficiency. To address this, a dataset of 1483 RGB images of grapevines affected by various diseases and stresses, including FD, was acquired by proximal sensing. The images were taken in the field at a distance of 1-2 meters to capture entire grapevines and an industrial flash was ensuring a constant luminance on the images regardless of the environmental circumstances. Images of 5 grape varieties (Cabernet sauvignon, Cabernet franc, Merlot, Ugni blanc and Sauvignon blanc) were acquired during 2 years (2020 and 2021). Two types of annotations were made: expert diagnosis at the grapevine scale in the field and symptom annotations at the leaf, shoot, and bunch levels on computer. On 744 images, the leaves were annotated and divided into three classes: 'FD symptomatic leaves', 'Esca symptomatic leaves', and 'Confounding leaves'. Symptomatic bunches and shoots were, in addition of leaves, annotated on 110 images using bounding boxes and broken lines, respectively. Additionally, 128 segmentation masks were created to allow the detection of the symptomatic shoots and bunches by segmentation algorithms and compare the results to those of the detection algorithms.

7.
Plants (Basel) ; 12(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36840210

RESUMO

A panel of 114 genetically diverse barley lines were assessed in the greenhouse and field for resistance to the pathogen Puccinia hordei, the causal agent of barley leaf rust. Multi-pathotype tests revealed that 16.6% of the lines carried the all-stage resistance (ASR) gene Rph3, followed by Rph2 (4.4%), Rph1 (1.7%), Rph12 (1.7%) or Rph19 (1.7%). Five lines (4.4%) were postulated to carry the gene combinations Rph2+9.am, Rph2+19 and Rph8+19. Three lines (2.6%) were postulated to carry Rph15 based on seedling rust tests and genotyping with a marker linked closely to this gene. Based on greenhouse seedling tests and adult-plant field tests, 84 genotypes (73.7%) were identified as carrying APR, and genotyping with molecular markers linked closely to three known APR genes (Rph20, Rph23 and Rph24) revealed that 48 of the 84 genotypes (57.1%) likely carry novel (uncharacterized) sources of APR. Seven lines were found to carry known APR gene combinations (Rph20+Rph23, Rph23+Rph24 and Rph20+Rph24), and these lines had higher levels of field resistance compared to those carrying each of these three APR genes singly. GWAS identified 12 putative QTLs; strongly associated markers located on chromosomes 1H, 2H, 3H, 5H and 7H. Of these, the QTL on chromosome 7H had the largest effect on resistance response to P. hordei. Overall, these studies detected several potentially novel genomic regions associated with resistance. The findings provide useful information for breeders to support the utilization of these sources of resistance to diversify resistance to leaf rust in barley and increase resistance durability.

8.
Cureus ; 15(12): e49910, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38174185

RESUMO

Overcrowding and extended waiting times in the emergency department (ED) can pose a significant risk of COVID-19 transmission from patients to healthy individuals. In 2017, the Saudi Ministry of Health (MOH) introduced a visual triage system (VTS) with scoring to notify healthcare workers (HCWs) in EDs about the Middle East respiratory syndrome coronavirus (MERS-CoV) infection risk. During the COVID-19 pandemic, the MOH employed a VTS to classify patients according to their potential risk of COVID-19 infection upon their admission to the ED. Suspected patients were then directed along specific pathways to reduce their contact with healthy individuals. This study assessed HCWs' satisfaction with the VTS in the ED of two major government hospitals within the Riyadh region. Additionally, it assessed HCWs' perceptions of VTS effectiveness. This study used a cross-sectional, observational design and relied on surveys for data collection. A total of 127 participants completed the survey, of which 87 (68.5%) were based in the EDs of the two hospitals. Among the ED participants, 18.1% expressed satisfaction with the VTS, 46.4% were neutral, and 33.1% reported dissatisfaction. ED participants provided feedback on the system's effectiveness, with 24.1% finding it effective, 66.7% considering it somewhat effective, and 9.2% deeming it ineffective. Of the total (127) study participants (70.1%) reported that the HCWs required better training to effectively implement the VTS infection control plans for suspected cases. Fewer than half of the participants (35.4%) deemed the time spent by VTS personnel to identify COVID-19 cases to be reasonable, whereas 22% found it too short and 27.6% considered it too long. Of the total 127 participants, 63% reported that language differences between patients and HCWs constituted barriers to the effective application of the VTS. Our study findings indicated that most ED participants had a neutral outlook on their satisfaction with the VTS and a neutral perspective on the effectiveness of VTS, viewing it as only somewhat effective. Reported weaknesses and key obstacles to the successful implementation of the VTS included language barriers. and insufficient training for HCWs, and unclear VTS pathways. The reported strengths of the VTS included its effectiveness in reducing crowds and identification of COVID-19 patients.

9.
Front Genet ; 13: 900572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783289

RESUMO

Landraces are considered a valuable source of potential genetic diversity that could be used in the selection process in any plant breeding program. Here, we assembled a population of 600 bread wheat landraces collected from eight different countries, conserved at the ICARDA's genebank, and evaluated the genetic diversity and the population structure of the landraces using single nucleotide polymorphism (SNP) markers. A total of 11,830 high-quality SNPs distributed across the genomes A (40.5%), B (45.9%), and D (13.6%) were used for the final analysis. The population structure analysis was evaluated using the model-based method (STRUCTURE) and distance-based methods [discriminant analysis of principal components (DAPC) and principal component analysis (PCA)]. The STRUCTURE method grouped the landraces into two major clusters, with the landraces from Syria and Turkey forming two clusters with high proportions of admixture, whereas the DAPC and PCA analysis grouped the population into three subpopulations mostly according to the geographical information of the landraces, i.e., Syria, Iran, and Turkey with admixture. The analysis of molecular variance revealed that the majority of the variation was due to genetic differences within the populations as compared with between subpopulations, and it was the same for both the cluster-based and distance-based methods. Genetic distance analysis was also studied to estimate the differences between the landraces from different countries, and it was observed that the maximum genetic distance (0.389) was between the landraces from Spain and Palestine, whereas the minimum genetic distance (0.013) was observed between the landraces from Syria and Turkey. It was concluded from the study that the model-based methods (DAPC and PCA) could dissect the population structure more precisely when compared with the STRUCTURE method. The population structure and genetic diversity analysis of the bread wheat landraces presented here highlight the complex genetic architecture of the landraces native to the Fertile Crescent region. The results of this study provide useful information for the genetic improvement of hexaploid wheat and facilitate the use of landraces in wheat breeding programs.

10.
Plants (Basel) ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890473

RESUMO

The Adapting Agriculture to Climate Change Project set out to improve the diversity, quantity, and accessibility of germplasm collections of crop wild relatives (CWR). Between 2013 and 2018, partners in 25 countries, heirs to the globetrotting legacy of Nikolai Vavilov, undertook seed collecting expeditions targeting CWR of 28 crops of global significance for agriculture. Here, we describe the implementation of the 25 national collecting programs and present the key results. A total of 4587 unique seed samples from at least 355 CWR taxa were collected, conserved ex situ, safety duplicated in national and international genebanks, and made available through the Multilateral System (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty). Collections of CWR were made for all 28 targeted crops. Potato and eggplant were the most collected genepools, although the greatest number of primary genepool collections were made for rice. Overall, alfalfa, Bambara groundnut, grass pea and wheat were the genepools for which targets were best achieved. Several of the newly collected samples have already been used in pre-breeding programs to adapt crops to future challenges.

11.
Front Plant Sci ; 13: 762002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548283

RESUMO

Ascochyta blight (AB), caused by the fungal pathogen Ascochyta rabiei, is a devastating foliar disease of chickpea (Cicer arietinum L.). The genotyping-by-sequencing (GBS)-based approach was deployed for mapping QTLs associated with AB resistance in chickpea in two recombinant inbred line populations derived from two crosses (AB3279 derived from ILC 1929 × ILC 3279 and AB482 derived from ILC 1929 × ILC 482) and tested in six different environments. Twenty-one different genomic regions linked to AB resistance were identified in regions CalG02 and CalG04 in both populations AB3279 and AB482. These regions contain 1,118 SNPs significantly associated with AB resistance (p ≤ 0.001), which explained 11.2-39.3% of the phenotypic variation (PVE). Nine of the AB resistance-associated genomic regions were newly detected in this study, while twelve regions were known from previous AB studies. The proposed physical map narrows down AB resistance to consistent genomic regions identified across different environments. Gene ontology (GO) assigned these QTLs to 319 genes, many of which were associated with stress and disease resistance, and with most important genes belonging to resistance gene families such as leucine-rich repeat (LRR) and transcription factor families. Our results indicate that the flowering-associated gene GIGANTEA is a possible key factor in AB resistance in chickpea. The results have identified AB resistance-associated regions on the physical genetic map of chickpea and allowed for the identification of associated markers that will help in breeding of AB-resistant varieties.

12.
Nat Plants ; 8(5): 491-499, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534721

RESUMO

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ásia Oriental , América do Sul , Triticum/genética
13.
Biol Psychiatry ; 92(4): 323-334, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35227461

RESUMO

BACKGROUND: The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important step toward understanding the pathophysiology of this common developmental disability. METHODS: Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from the Arabian Peninsula. For in vivo functional studies of the implicated gene's function in cognition, Drosophila melanogaster and mice with targeted interference of the orthologous gene were used. Behavioral, electrophysiological, and structural magnetic resonance imaging analyses were conducted for phenotypic testing. RESULTS: Homozygous premature termination codons in PDZD8, encoding an endoplasmic reticulum-anchored lipid transfer protein, showed cosegregation with syndromic ID in both families. Drosophila melanogaster with knockdown of the PDZD8 ortholog exhibited impaired long-term courtship-based memory. Mice homozygous for a premature termination codon in Pdzd8 exhibited brain structural, hippocampal spatial memory, and synaptic plasticity deficits. CONCLUSIONS: These data demonstrate the involvement of homozygous loss-of-function mutations in PDZD8 in a neurodevelopmental cognitive disorder. Model organisms with manipulation of the orthologous gene replicate aspects of the human phenotype and suggest plausible pathophysiological mechanisms centered on disrupted brain development and synaptic function. These findings are thus consistent with accruing evidence that synaptic defects are a common denominator of ID and other neurodevelopmental conditions.


Assuntos
Disfunção Cognitiva , Deficiência Intelectual , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Disfunção Cognitiva/genética , Consanguinidade , Drosophila , Drosophila melanogaster , Humanos , Deficiência Intelectual/genética , Camundongos , Mutação/genética
14.
Sci Rep ; 11(1): 15967, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354105

RESUMO

Barley production worldwide is limited by several abiotic and biotic stresses and breeding of highly productive and adapted varieties is key to overcome these challenges. Leaf scald, caused by Rhynchosporium commune is a major disease of barley that requires the identification of novel sources of resistance. In this study two subsets of genebank accessions were used: one extracted from the Reference set developed within the Generation Challenge Program (GCP) with 191 accessions, and the other with 101 accessions selected using the filtering approach of the Focused Identification of Germplasm Strategy (FIGS). These subsets were evaluated for resistance to scald at the seedling stage under controlled conditions using two Moroccan isolates, and at the adult plant stage in Ethiopia and Morocco. The results showed that both GCP and FIGS subsets were able to identify sources of resistance to leaf scald at both plant growth stages. In addition, the test of independence and goodness of fit showed that FIGS filtering approach was able to capture higher percentages of resistant accessions compared to GCP subset at the seedling stage against two Moroccan scald isolates, and at the adult plant stage against four field populations of Morocco and Ethiopia, with the exception of Holetta nursery 2017. Furthermore, four machine learning models were tuned on training sets to predict scald reactions on the test sets based on diverse metrics (accuracy, specificity, and Kappa). All models efficiently identified resistant accessions with specificities higher than 0.88 but showed different performances between isolates at the seedling and to field populations at the adult plant stage. The findings of our study will help in fine-tuning FIGS approach using machine learning for the selection of best-bet subsets for resistance to scald disease from the large number of genebank accessions.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Hordeum/genética , Algoritmos , Ascomicetos/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Bases de Dados Genéticas , Genes de Plantas/genética , Genótipo , Aprendizado de Máquina , Modelos Teóricos , Marrocos , Fenótipo , Melhoramento Vegetal/métodos , Doenças das Plantas , Folhas de Planta/genética , Locos de Características Quantitativas/genética , Plântula/genética
15.
Front Plant Sci ; 12: 600176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113358

RESUMO

Septoria tritici blotch (STB) of wheat, caused by the ascomycete Zymoseptoria tritici (formerly Mycosphaerella graminicola), is one of the most important foliar diseases of wheat. In Morocco, STB is a devastating disease in temperate wheat-growing regions, and the yield losses can exceed up to 50% under favorable conditions. The aims of this study were to identify sources of resistance to STB in Septoria Association Mapping Panel (SAMP), which is composed of 377 advanced breeding lines (ABLs) from spring bread wheat breeding program of ICARDA, and to identify loci associated with resistance to STB at seedling (SRT) as well as at the adult plant (APS) stages using genome-wide association mapping (GWAM). Seedling resistance was evaluated under controlled conditions with two virulent isolates of STB (SAT-2 and 71-R3) from Morocco, whereas adult plant resistance was assessed at two hot spot locations in Morocco (Sidi Allal Tazi, Marchouch) under artificial inoculation with a mixture of STB isolates. At seedling stage, 45 and 32 ABLs were found to be resistant to 71-R3 and SAT-2 isolates of STB, respectively. At adult plant stage, 50 ABLs were found to be resistant at hot spot locations in Morocco. Furthermore, 10 genotypes showed resistance in both locations during two cropping seasons. GWAM was conducted with 9,988 SNP markers using phenotypic data for seedling and the adult plant stage. MLM model was employed in TASSEL 5 (v 5.2.53) using principal component analysis and Kinship Matrix as covariates. The GWAM analysis indicated 14 quantitative trait loci (QTL) at the seedling stage (8 for isolate SAT-2 and 6 for isolate 71-R3), while 23 QTL were detected at the adult plant stage resistance (4 at MCH-17, 16 at SAT-17, and 3 at SAT-18). SRT QTL explained together 33.3% of the phenotypic variance for seedling resistance to STB isolate SAT-2 and 28.3% for 71-R3, respectively. QTL for adult plant stage resistance explained together 13.1, 68.6, and 11.9% of the phenotypic variance for MCH-17, SAT-17, and SAT-18, respectively. Identification of STB-resistant spring bread wheat germplasm in combination with QTL detected both at SRT and APS stage will serve as an important resource in STB resistance breeding efforts.

16.
Plants (Basel) ; 10(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809650

RESUMO

Wheat rust diseases, including yellow rust (Yr; also known as stripe rust) caused by Puccinia striiformis Westend. f. sp. tritici, leaf rust (Lr) caused by Puccinia triticina Eriks. and stem rust (Sr) caused by Puccinia graminis Pres f. sp. tritici are major threats to wheat production all around the globe. Durable resistance to wheat rust diseases can be achieved through genomic-assisted prediction of resistant accessions to increase genetic gain per unit time. Genomic prediction (GP) is a promising technology that uses genomic markers to estimate genomic-assisted breeding values (GBEVs) for selecting resistant plant genotypes and accumulating favorable alleles for adult plant resistance (APR) to wheat rust diseases. To evaluate GP we compared the predictive ability of nine different parametric, semi-parametric and Bayesian models including Genomic Unbiased Linear Prediction (GBLUP), Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (EN), Bayesian Ridge Regression (BRR), Bayesian A (BA), Bayesian B (BB), Bayesian C (BC) and Reproducing Kernel Hilbert Spacing model (RKHS) to estimate GEBV's for APR to yellow, leaf and stem rust of wheat in a panel of 363 bread wheat landraces of Afghanistan origin. Based on five-fold cross validation the mean predictive abilities were 0.33, 0.30, 0.38, and 0.33 for Yr (2016), Yr (2017), Lr, and Sr, respectively. No single model outperformed the rest of the models for all traits. LASSO and EN showed the lowest predictive ability in four of the five traits. GBLUP and RR gave similar predictive abilities, whereas Bayesian models were not significantly different from each other as well. We also investigated the effect of the number of genotypes and the markers used in the analysis on the predictive ability of the GP model. The predictive ability was highest with 1000 markers and there was a linear trend in the predictive ability and the size of the training population. The results of the study are encouraging, confirming the feasibility of GP to be effectively applied in breeding programs for resistance to all three wheat rust diseases.

17.
Plant Genome ; 14(1): e20066, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615748

RESUMO

Stripe or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici is a major threat to bread wheat production worldwide. The breakdown in resistance of certain major genes and newly emerging aggressive races of stripe rusts pose serious concerns in all main wheat growing areas of the world. To identify new sources of resistance and associated QTL for effective utilization in future breeding programs an association mapping (AM) panel comprising of 600 bread wheat landraces collected from eight different countries conserved at ICARDA gene bank were evaluated for seedling and adult plant resistance against the PstS2 and Warrior races of stripe rust at the Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey during 2016, 2018 and 2019. A set of 25,169 informative SNP markers covering the whole genome were used to examine the population structure, linkage disequilibrium and marker-trait associations in the AM panel. The genome-wide association study (GWAS) was carried out using a Mixed Linear Model (MLM). We identified 47 SNP markers across 19 chromosomes with significant SNP-trait associations for both seedling stage and adult plant resistance. The threshold of significance for all SNP-trait associations was determined by the false discovery rate (q) ≤ 0.05. Three genomic regions (QYr.1D_APR, QYr.3A_seedling and QYr.7D_seedling) identified in this study do not correspond to previously reported Yr genes or QTL, suggesting new genomic regions for stripe rust resistance.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Pão , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Locos de Características Quantitativas , Triticum/genética , Turquia
18.
Curr Opin Insect Sci ; 45: 35-41, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33278640

RESUMO

Even though host plant resistance has long been recognized as the foundation of integrated pest management, research in North Africa, West and Central Asia only started in 1980. The recent use of Focused Identification of Germplasm Strategy has increased the chance of finding sources of resistance to cereal and food legume pests. The resistant sources have been successfully used in breeding programs to develop resistant germplasm to key cereal and legume pests. The first major locus associated with resistance to Sunn pest at vegetative stage was identified in bread wheat as were two new loci for Hessian fly resistance from Triticum dicoccum and T. araraticum. Combined sources of resistance to several pests have been identified in alien translocation wheat lines.


Assuntos
Grão Comestível/genética , Fabaceae/genética , Herbivoria , Insetos/fisiologia , Defesa das Plantas contra Herbivoria , África do Norte , Animais , Ásia Central , Produtos Agrícolas/genética , Oriente Médio , Melhoramento Vegetal
19.
Schizophr Bull ; 47(3): 796-802, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33159203

RESUMO

We report a consanguineous family in which schizophrenia segregates in a manner consistent with recessive inheritance of a rare, partial-penetrance susceptibility allele. From 4 marriages between 2 sets of siblings who are half first cousins, 6 offspring have diagnoses of psychotic disorder. Homozygosity mapping revealed a 6.1-Mb homozygous region on chromosome 13q22.2-31.1 shared by all affected individuals, containing 13 protein-coding genes. Microsatellite analysis confirmed homozygosity for the affected haplotype in 12 further apparently unaffected members of the family. Psychiatric reports suggested an endophenotype of milder psychiatric illness in 4 of these individuals. Exome and genome sequencing revealed no potentially pathogenic coding or structural variants within the risk haplotype. Filtering for noncoding variants with a minor allele frequency of <0.05 identified 17 variants predicted to have significant effects, the 2 most significant being within or adjacent to the SCEL gene. RNA sequencing of blood from an affected homozygote showed the upregulation of transcription from NDFIP2 and SCEL. NDFIP2 is highly expressed in brain, unlike SCEL, and is involved in determining T helper (Th) cell type 1 and Th2 phenotypes, which have previously been implicated with schizophrenia.


Assuntos
Cromossomos Humanos Par 13/genética , Consanguinidade , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Transtornos Psicóticos/genética , Esquizofrenia/genética , Endofenótipos , Feminino , Loci Gênicos , Humanos , Masculino , Linhagem , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/fisiopatologia
20.
Plants (Basel) ; 10(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374129

RESUMO

A total of 14 Rhizobium strains were isolated from lentil accessions grown at the ICARDA experimental research station at Marchouch in Morocco and used for molecular characterization and symbiotic efficiency assessment. Individual phylogenetic analysis using the 16S rRNA gene, house-keeping genes rpoB, recA, and gyrB, and symbiotic genes nodD and nodA along with Multilocus Sequence Analysis (MLSA) of the concatenated genes (16S rRNA-rpoB-recA-gyrB) was carried out for the identification and clustering of the isolates. The symbiotic efficiency of the strains was assessed on three Moroccan lentil cultivars (Bakria, Chakkouf, and Zaria) based on the number of nodules, plant height, plant dry weight, and total nitrogen content in leaves. The results showed that the individual phylogenetic analysis clustered all the strains into Rhizobium laguerreae and Rhizobium leguminosarum with sequence similarity ranging from 94 to 100%, except one strain which clustered with Mesorhizobium huakuii with sequence similarity of 100%. The MLSA of the concatenated genes and the related percentages of similarity clustered these strains into two groups of Rhizobium species, with one strain as a new genospecies when applying the threshold of 96%. For symbiotic efficiency, the Bakria variety showed the best association with 10 strains compared to its non-inoculated control (p-value ≤ 0.05), followed by Chakkouf and Zaria. The present study concluded that the genetic diversity and the symbiotic efficiency of Rhizobium strains appeared to be mainly under the control of the lentil genotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...