Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 454: 114651, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37657512

RESUMO

Animal models of Alzheimer's disease (AD) induced by intracerebroventricular (ICV) or intrahippocampal (IH) administration of amyloid-beta (Aß) are widely used in current research. It remains unclear whether these models provide similar outcomes or mimic pathological mechanisms of AD equally. The aim of the work was to compare two models induced by ICV or IH administration of Aß25-35 oligomers to C57BL/6 mice. Parameters characterizing cognitive function (passive avoidance test), protein expression (IBA1, Aß, LC3-II) and expression of genes for neuroinflammation (Aif1, Lcn2, Nrf2), autophagy (Atg8, Becn1, Park2), or markers of neurodegeneration (Cst3, Insr, Vegfa) were analyzed. Сognitive deficits, amyloid accumulation, and neuroinflammatory response in the brain evaluated by the microglial activation were similar in both models. Thus, both ways of Aß administration appear to be equally suitable for modelling AD-like pathology in mice. Our findings strongly support the key role of Aß load and neuroinflammatory response in the hippocampus and frontal cortex for the progression of AD-like pathology and development of cognitive deficits. There were certain minor differences between the models in the mRNA level of genes involved in the processes of neuroinflammation, neurodegeneration, and autophagy. Modulating effects of the central administration of Aß25-35 on the mRNA expression of Aif1, Lcn2, Park2, and Vegfa genes in different brain structures were revealed. The effects occurred to be more pronounced with the ICV method compared with the IH method. These findings give insight into the processes at initial stages of Aß-induced pathology depending on a primary location of Aß oligomers in the brain.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Inflamação , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias
2.
Vet Sci ; 10(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36851400

RESUMO

Antimicrobial drugs represent a diverse group of widely utilized antibiotic, antifungal, antiparasitic and antiviral agents. Their growing use and clinical importance necessitate our improved understanding of physiological effects of antimicrobial drugs, including their potential effects on the central nervous system (CNS), at molecular, cellular, and behavioral levels. In addition, antimicrobial drugs can alter the composition of gut microbiota, and hence affect the gut-microbiota-brain axis, further modulating brain and behavioral processes. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a powerful model system for screening various antimicrobial drugs, including probing their putative CNS effects. Here, we critically discuss recent evidence on the effects of antimicrobial drugs on brain and behavior in zebrafish, and outline future related lines of research using this aquatic model organism.

3.
Pharmaceutics ; 14(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36015377

RESUMO

Traumatic brain injury (TBI) is a major public health problem. Here, we developed a novel model of non-invasive TBI induced by laser irradiation in the telencephalon of adult zebrafish (Danio rerio) and assessed their behavior and neuromorphology to validate the model and evaluate potential targets for neuroreparative treatment. Overall, TBI induced hypolocomotion and anxiety-like behavior in the novel tank test, strikingly recapitulating responses in mammalian TBI models, hence supporting the face validity of our model. NeuN-positive cell staining was markedly reduced one day, but not seven days, after TBI, suggesting increased neuronal damage immediately after the injury, and its fast recovery. The brain-derived neurotrophic factor (Bdnf) level in the brain dropped immediately after the trauma, but fully recovered seven days later. A marker of microglial activation, Iba1, was elevated in the TBI brain, albeit decreasing from Day 3. The levels of hypoxia-inducible factor 1-alpha (Hif1a) increased 30 min after the injury, and recovered by Day 7, further supporting the construct validity of the model. Collectively, these findings suggest that our model of laser-induced brain injury in zebrafish reproduces mild TBI and can be a useful tool for TBI research and preclinical neuroprotective drug screening.

4.
Neurosci Lett ; 786: 136790, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35839995

RESUMO

The hippocampus is a key anatomical brain region associated with depression. On the other hand, immune cells and their releasing cytokines play an essential role in stress and depression. Noteworthy that the most of psychoactive drugs produce unidirectional effects on the cells of both nervous and immune systems. This suggests the immunotherapy for behavioral disorders based on the treatment with autologous immune cells in which functional activity was modulated ex vivo by a psychoactive drug. Here, we treated the immune cells of depressive-like mice in vitro with caffeine (100 µg per 15 × 106 cells). The effects of caffeine-treated immune cells transplantation on neuronal density, production of brain-derived neurotrophic factor (BDNF) and a number of cytokines in the hippocampus of depressive-like syngeneic animals were studied. In depressive-like recipients, an increase in the density of pyramidal neurons in CA1 and CA3 hippocampal regions, accompanied with augmented level of BDNF, decreased levels of pro-inflammatory (IL-1ß, IL-6, INF-γ, and TNF-α) and increased levels of anti-inflammatory (IL-10 and IL-4) cytokines was found. The mechanisms of the revealed structural and functional alterations in the hippocampus of depressive-like recipients after transplantation of caffeine-treated immune cells are discussed.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cafeína , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cafeína/farmacologia , Citocinas/metabolismo , Depressão , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos
5.
Pharmacol Biochem Behav ; 217: 173406, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609863

RESUMO

Alzheimer's disease (AD) is associated with amyloid-ß (Aß) accumulation that might be hindered by autophagy. There are two ways to induce autophagy: through mTOR-dependent and mTOR-independent pathways (here, by means of rapamycin and trehalose, respectively). The aim of this study was to evaluate the contribution of these pathways and their combination to the treatment of experimental AD. Mice were injected bilaterally intracerebroventricularly with an Aß fragment (25-35) to set up an AD model. Treatment with rapamycin (10 mg/kg, every other day), trehalose consumption with drinking water (2 mg/mL, ad libitum), or their combination started 2 days after the surgery and lasted for 2 weeks. Open-field, plus-maze, and passive avoidance tests were used for behavioral phenotyping. Neuronal density, Aß accumulation, and the expression of autophagy marker LC3-II and neuroinflammatory marker IBA1 were measured in the frontal cortex and hippocampus. mRNA levels of autophagy genes (Atg8, Becn1, and Park2) were assessed in the hippocampus. Trehalose but not rapamycin caused pronounced prolonged autophagy induction and transcriptional activation of autophagy genes. Both drugs effectively prevented Aß deposition and microglia activation. Autophagy inhibitor 3-methyladenine significantly attenuated autophagy activation and disturbed the effect of the inducers on Aß load. The inducers substantially reversed behavioral and neuronal deficits in Aß-injected mice. In many cases, the best outcomes were achieved with the combined treatment. Thus, trehalose alone or combined autophagy activation by the two inducers may be a promising treatment approach to AD-like neurodegeneration. Some aspects of interaction between mTOR-dependent and mTOR-independent pathways of autophagy are discussed.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Terapias em Estudo , Trealose/farmacologia , Trealose/uso terapêutico
6.
Neurosci Biobehav Rev ; 138: 104679, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490912

RESUMO

Neurodegeneration is a major cause of Alzheimer's, Parkinson's, Huntington's, multiple and amyotrophic lateral sclerosis, pontocerebellar hypoplasia, dementia and other related brain disorders. Their complex pathogenesis commonly includes genetic and neurochemical deficits, misfolded protein toxicity, demyelination, apoptosis and mitochondrial dysfunctions. Albeit differing in specific underlying mechanisms, neurodegenerative disorders typically display evolutionarily conserved mechanisms across taxa. Here, we review the role of zebrafish models in recapitulating major human and rodent neurodegenerative conditions, demonstrating this species as a highly relevant experimental model for research on neurodegenerative diseases, and discussing how these fish models can further clarify the underlying genetic, neurochemical, neuroanatomical and behavioral pathogenic mechanisms.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Peixe-Zebra
7.
Life (Basel) ; 12(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35330193

RESUMO

Db/db mice (carrying a mutation in the gene encoding leptin receptor) show autophagy suppression. Our aim was to evaluate the effect of autophagy inducer trehalose on liver and heart autophagy in db/db mice and to study inflammation dysregulation and the suitability of chitinases' expression levels as diabetes markers. Thirty-eight male db/db mice and C57/BL mice (control) were used. The db/db model manifested inflammation symptoms: overexpression of TNF-α in the spleen and underexpression of IL-10 in the liver and spleen (cytokine imbalance). Simultaneously, we revealed decreased expression of chitotriosidase (CHIT1) and acid mammalian chitinase (CHIA) in the liver of db/db mice. CHIA expression in db/db mice is significantly lower only in the spleen. Trehalose treatment significantly reduced blood glucose concentration and glycated hemoglobin. Treatment of db/db mice by trehalose was followed by increased autophagy induction in the heart and liver (increased autolysosomes volume density studied by morphometric electron-microscopic method). Trehalose exerted beneficial cardiac effects possibly via increased lipophagy (uptake of lipid droplets). The autophagy activation by trehalose had several positive effects on the heart and liver of db/db mice; therefore, lipophagy activation seems to be a promising therapy for diabetes.

8.
Toxics ; 10(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202255

RESUMO

The zebrafish is a promising model species in biomedical research, including neurotoxicology and neuroactive drug screening. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) evokes degeneration of dopaminergic neurons and is commonly used to model Parkinson's disease (PD) in laboratory animals, including zebrafish. However, cognitive phenotypes in MPTP-evoked experimental PD models remain poorly understood. Here, we established an LD50 (292 mg/kg) for intraperitoneal MPTP administration in adult zebrafish, and report impaired spatial working memory (poorer spontaneous alternation in the Y-maze) in a PD model utilizing fish treated with 200 µg of this agent. In addition to conventional behavioral analyses, we also employed artificial intelligence (AI)-based approaches to independently and without bias characterize MPTP effects on zebrafish behavior during the Y-maze test. These analyses yielded a distinct cluster for 200-µg MPTP (vs. other) groups, suggesting that high-dose MPTP produced distinct, computationally detectable patterns of zebrafish swimming. Collectively, these findings support MPTP treatment in adult zebrafish as a late-stage experimental PD model with overt cognitive phenotypes.

9.
Prog Neurobiol ; 208: 101993, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33440208

RESUMO

Social behavior represents a beneficial interaction between conspecifics that is critical for maintaining health and wellbeing. Dysfunctional or poor social interaction are associated with increased risk of physical (e.g., vascular) and psychiatric disorders (e.g., anxiety, depression, and substance abuse). Although the impact of negative and positive social interactions is well-studied, their underlying mechanisms remain poorly understood. Zebrafish have well-characterized social behavior phenotypes, high genetic homology with humans, relative experimental simplicity and the potential for high-throughput screens. Here, we discuss the use of zebrafish as a candidate model organism for studying the fundamental mechanisms underlying social interactions, as well as potential impacts of social isolation on human health and wellbeing. Overall, the growing utility of zebrafish models may improve our understanding of how the presence and absence of social interactions can differentially modulate various molecular and physiological biomarkers, as well as a wide range of other behaviors.


Assuntos
Saúde Mental , Peixe-Zebra , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Humanos , Comportamento Social , Interação Social , Peixe-Zebra/fisiologia
10.
Neurosci Lett ; 768: 136382, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34861343

RESUMO

Critical for organismal survival, pain evokes strong physiological and behavioral responses in various sentient species. Clinical and preclinical (animal) studies markedly increase our understanding of biological consequences of developmental (early-life) adversity, as well as acute and chronic pain. However, the long-term effects of early-life pain exposure on human and animal emotional responses remain poorly understood. Here, we discuss experimental models of nociception in rodents and zebrafish, and summarize mounting evidence of the role of early-life pain in shaping emotional traits later in life. We also call for further development of animal models to probe the impact of early-life pain exposure on behavioral traits, brain disorders and novel therapeutic treatments.


Assuntos
Experiências Adversas da Infância , Modelos Animais de Doenças , Emoções , Dor , Pesquisa Translacional Biomédica , Animais , Humanos , Personalidade , Roedores , Peixe-Zebra
11.
Pharmaceutics ; 13(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34959450

RESUMO

Traumatic brain injury (TBI) is a leading cause of mortality and morbidity among the global youth and commonly results in long-lasting sequelae, including paralysis, epilepsy, and a host of mental disorders such as major depressive disorder. Previous studies were mainly focused on severe TBI as it occurs in adults. This study explored the long-term adverse effect of mild TBI in juvenile animals (mTBI-J). Male Sprague Dawley rats received mTBI-J or sham treatment at six weeks old, then underwent behavioral, biochemical, and histological experiments three weeks later (at nine weeks old). TTC staining, H&E staining, and brain edema measurement were applied to evaluate the mTBI-J induced cerebral damage. The forced swimming test (FST) and sucrose preference test (SPT) were applied for measuring depression-like behavior. The locomotor activity test (LAT) was performed to examine mTBI-J treatment effects on motor function. After the behavioral experiments, the dorsal hippocampus (dHip) and ventral hippocampus (vHip) were dissected out for western blotting to examine the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB). Finally, a TrkB agonist 7,8-DHF was injected intraperitoneally to evaluate its therapeutic effect on the mTBI-J induced behavioral abnormalities at the early adult age. Results showed that a mild brain edema occurred, but no significant neural damage was found in the mTBI-J treated animals. In addition, a significant increase of depression-like behaviors was observed in the mTBI-J treated animals; the FST revealed an increase in immobility, and a decrease in sucrose consumption was found in the mTBI-J treated animals. There were no differences observed in the total distance traveled of the LAT and the fall latency of the rotarod test. The hippocampal BDNF expression, but not the TrkB, were significantly reduced in mTBI-J, and the mTBI-J treatment-induced depression-like behavior was lessened after four weeks of 7,8-DHF administration. Collectively, these results indicate that even a mild juvenile TBI treatment that did not produce motor deficits or significant histological damage could have a long-term adverse effect that could be sustained to adulthood, which raises the depression-like behavior in the adult age. In addition, chronic administration of 7,8-DHF lessens the mTBI-J treatment-induced depression-like behaviors in adult rats. We suggest the potential usage of 7,8-DHF as a therapeutic agent for preventing the long-term adverse effect of mTBI-J.

12.
Neurobiol Stress ; 15: 100405, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34722834

RESUMO

Stress response is essential for the organism to quickly restore physiological homeostasis disturbed by various environmental insults. In addition to well-established physiological cascades, stress also evokes various brain and behavioral responses. Aquatic animal models, including the zebrafish (Danio rerio), have been extensively used to probe pathobiological mechanisms of stress and stress-related brain disorders. Here, we critically discuss the use of zebrafish models for studying mechanisms of stress and modeling its disorders experimentally, with a particular cross-taxon focus on the potential evolution of stress responses from zebrafish to rodents and humans, as well as its translational implications.

13.
Front Neurosci ; 15: 736786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658774

RESUMO

Ceftriaxone (CEF) is a safe and multipotent antimicrobial agent that possesses neuroprotective properties. Earlier, we revealed the restoration of cognitive function in OXYS rats with signs of Alzheimer's disease (AD)-like pathology by CEF along with its modulating the expression of genes related to the system of amyloid beta (Aß) metabolism in the brain. The aim of this study was to determine the effects of CEF on behavior, Aß deposition, and associated neuroinflammation using another model of an early AD-like pathology induced by Aß. Mice were injected bilaterally i.c.v. with Aß fragment 25-35 to produce the AD model, while the CEF treatment (100 mg/kg/day, i.p., 36 days) started the next day after the surgery. The open field test, T-maze, Barnes test, IntelliCage, and passive avoidance test were used for behavioral phenotyping. Neuronal density, amyloid accumulation, and the expression of neuroinflammatory markers were measured in the frontal cortex and hippocampus. CEF exhibited beneficial effects on some cognitive features impaired by Aß neurotoxicity including complete restoration of the fear-induced memory and learning in the passive avoidance test and improved place learning in the IntelliCage. CEF significantly attenuated amyloid deposition and neuroinflammatory response. Thus, CEF could be positioned as a potent multipurpose drug as it simultaneously targets proteostasis network and neuroinflammation, as well as glutamate excitotoxicity, oxidative pathways, and neurotrophic function as reported earlier. Together with previous reports on the positive effects of CEF in AD models, the results confirm the potential of CEF as a promising treatment against cognitive decline from the early stages of AD progression.

14.
Cells ; 10(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34685538

RESUMO

Autophagy attenuation has been found in neurodegenerative diseases, aging, diabetes mellitus, and atherosclerosis. In experimental models of neurodegenerative diseases, the correction of autophagy in the brain reverses neuronal and behavioral deficits and hence seems to be a promising therapy for neuropathologies. Our aim was to study the effect of an autophagy inducer, trehalose, on brain autophagy and behavior in a genetic model of diabetes with signs of neuronal damage (db/db mice). A 2% trehalose solution was administered as drinking water during 24 days of the experiment. Expressions of markers of autophagy (LC3-II), neuroinflammation (IBA1), redox state (NOS), and neuronal density (NeuN) in the brain were assessed by immunohistochemical analysis. For behavioral phenotyping, the open field, elevated plus-maze, tail suspension, pre-pulse inhibition, and passive avoidance tests were used. Trehalose caused a slight reduction in increased blood glucose concentration, considerable autophagy activation, and a decrease in the neuroinflammatory response in the brain along with improvements of exploration, locomotor activity, anxiety, depressive-like behavior, and fear learning and memory in db/db mice. Trehalose exerted some beneficial peripheral and systemic effects and partially reversed behavioral alterations in db/db mice. Thus, trehalose as an inducer of mTOR-independent autophagy is effective at alleviating neuronal and behavioral disturbances accompanying experimental diabetes.


Assuntos
Autofagia/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Comportamento Problema/psicologia , Trealose/uso terapêutico , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Trealose/farmacologia
15.
Behav Processes ; 193: 104505, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34547376

RESUMO

Strongly affecting human and animal physiology, sounds and vibration are critical environmental factors whose complex role in behavioral and brain functions necessitates further clinical and experimental studies. Zebrafish are a promising model organism for neuroscience research, including probing the contribution of auditory and vibration stimuli to neurobehavioral processes. Here, we summarize mounting evidence on the role of sound and vibration in zebrafish behavior and brain function, and outline future directions of translational research in this field. With the growing environmental exposure to noise and vibration, we call for more active use of zebrafish models for probing neurobehavioral and bioenvironmental consequences of acute and long-term exposure to sounds and vibration in complex biological systems.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Humanos , Vibração
16.
Behav Brain Res ; 412: 113430, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34182007

RESUMO

This study discovered a novel acoustic phenotype in Calsyntenin2 deficient knockout (Clstn2-KO) pups in the neurodevelopment period of 5-9 postnatal days (PND 5-9). The narrowband ultrasonic calls (nUSVs) were less complex (mostly one-note, shorter in duration and higher in peak frequency) in Clsnt2-KO than in wild-type (WT) C57BL/6 J pups. The wideband ultrasonic calls (wUSVs) were produced substantially more often by Clstn2-KO than WT pups. The clicks were longer in duration and higher in peak frequency and power quartiles in Clstn2-KO pups. The elevated discomfort due to additional two-minute maternal separation coupled with experimenter's touch, resulted in significantly higher call rates of both nUSVs and clicks in pups of both genotypes and sexes compared to the previous two-minute maternal separation, whereas the call rate of wUSVs was not affected. In Clstn2-KO pups, the prevalence of emission of wUSVs retained at both sex and both degrees of discomfort, thus providing a reliable quantitative acoustic indicator for this genetic line. Besides the acoustic differences, we also detected the increased head-to-body ratio in Clstn2-KO pups. Altogether, this study demonstrated that lack of such synaptic adhesion protein as calsyntenin2 affects neurodevelopment of vocalization in a mouse as a model organism.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Vocalização Animal/fisiologia , Acústica , Animais , Transtorno do Espectro Autista/metabolismo , Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Ultrassom
17.
Pharmacol Biochem Behav ; 207: 173205, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991579

RESUMO

Anxiety is the most prevalent brain disorder and a common cause of human disability. Animal models are critical for understanding anxiety pathogenesis and its pharmacotherapy. The zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in anxiety research and anxiolytic drug screening. High similarity between human, rodent and zebrafish molecular targets implies shared signaling pathways involved in anxiety pathogenesis. However, mounting evidence shows that zebrafish behavior can be modulated by drugs beyond conventional anxiolytics or anxiogenics. Furthermore, these effects may differ from human and/or rodent responses, as such 'unconventional' drugs may affect zebrafish behavior despite having no such profiles (or exerting opposite effects) in humans or rodents. Here, we discuss the effects of several putative unconventional anxiotropic drugs (aspirin, lysergic acid diethylamide (LSD), nicotine, naloxone and naltrexone) and their potential mechanisms of action in zebrafish. Emphasizing the growing utility of zebrafish models in CNS drug discovery, such unconventional anxiety pharmacology may provide important, evolutionarily relevant insights into complex regulation of anxiety in biological systems. Albeit seemingly complicating direct translation from zebrafish into clinical phenotypes, this knowledge may instead foster the development of novel CNS drugs, eventually facilitating innovative treatment of patients based on novel 'unconventional' targets identified in fish models.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Peixe-Zebra , Animais , Ansiedade/metabolismo , Aspirina/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Dietilamida do Ácido Lisérgico/farmacologia , Atividade Motora/efeitos dos fármacos , Naloxona/farmacologia , Naltrexona/farmacologia , Nicotina/farmacologia
18.
J Ethnopharmacol ; 267: 113383, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918992

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Although Traditional Chinese Medicine (TCM) has a millennia-long history of treating human brain disorders, its complex multi-target mechanisms of action remain poorly understood. Animal models are currently widely used to probe the effects of various TCMs on brain and behavior. The zebrafish (Danio rerio) has recently emerged as a novel vertebrate model organism for neuroscience research, and is increasingly applied for CNS drug screening and development. AIM OF THE STUDY: As zebrafish models are only beginning to be applied to studying TCM, we aim to provide a comprehensive review of the TCM effects on brain and behavior in this fish model species. MATERIALS AND METHODS: A comprehensive search of published literature was conducted using biomedical databases (Web of Science, Pubmed, Sciencedirect, Google Scholar and China National Knowledge Internet, CNKI), with key search words zebrafish, brain, Traditional Chinese Medicine, herbs, CNS, behavior. RESULTS: We recognize the developing utility of zebrafish for studying TCM, as well as outline the existing model limitations, problems and challenges, as well as future directions of research in this field. CONCLUSIONS: We demonstrate the growing value of zebrafish models for studying TCM, aiming to improve our understanding of TCM' therapeutic mechanisms and potential in treating brain disorders.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Animais , Comportamento Animal/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Modelos Animais , Peixe-Zebra
19.
Artigo em Inglês | MEDLINE | ID: mdl-32454162

RESUMO

Arecoline is a naturally occurring psychoactive alkaloid with partial agonism at nicotinic and muscarinic acetylcholine receptors. Arecoline consumption is widespread, making it the fourth (after alcohol, nicotine and caffeine) most used substance by humans. However, the mechanisms of acute and chronic action of arecoline in-vivo remain poorly understood. Animal models are a valuable tool for CNS disease modeling and drug screening. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a promising novel model organism for neuroscience research. Here, we assessed the effects of acute and chronic arecoline on adult zebrafish behavior and physiology. Overall, acute and chronic arecoline treatments produced overt anxiolytic-like behavior (without affecting general locomotor activity and whole-body cortisol levels), with similar effects also caused by areca nut water extracts. Acute arecoline at 10 mg/L disrupted shoaling, increased social preference, elevated brain norepinephrine and serotonin levels and reduced serotonin turnover. Acute arecoline also upregulated early protooncogenes c-fos and c-jun in the brain, whereas chronic treatment with 1 mg/L elevated brain expression of microglia-specific biomarker genes egr2 and ym1 (thus, implicating microglial mechanisms in potential effects of long-term arecoline use). Finally, acute 2-h discontinuation of chronic arecoline treatment evoked withdrawal-like anxiogenic behavior in zebrafish. In general, these findings support high sensitivity of zebrafish screens to arecoline and related compounds, and reinforce the growing utility of zebrafish for probing molecular mechanisms of CNS drugs. Our study also suggests that novel anxiolytic drugs can eventually be developed based on arecoline-like molecules, whose integrative mechanisms of CNS action may involve monoaminergic and neuro-immune modulation.


Assuntos
Ansiolíticos/farmacologia , Arecolina/farmacologia , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Atividade Motora/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Agonistas Colinérgicos/farmacologia , Feminino , Masculino , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Peixe-Zebra
20.
Brain Res Bull ; 166: 44-53, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027679

RESUMO

Neuroglia, including microglia and astrocytes, is a critical component of the central nervous system (CNS) that interacts with neurons to modulate brain activity, development, metabolism and signaling pathways. Thus, a better understanding of the role of neuroglia in the brain is critical. Complementing clinical and rodent data, the zebrafish (Danio rerio) is rapidly becoming an important model organism to probe the role of neuroglia in brain disorders. With high genetic and physiological similarity to humans and rodents, zebrafish possess some common (shared), as well as some specific molecular biomarkers and features of neuroglia development and functioning. Studying these common and zebrafish-specific aspects of neuroglia may generate important insights into key brain mechanisms, including neurodevelopmental, neurodegenerative, neuroregenerative and neurological processes. Here, we discuss the biology of neuroglia in humans, rodents and fish, its role in various CNS functions, and further directions of translational research into the role of neuroglia in CNS disorders using zebrafish models.


Assuntos
Doenças do Sistema Nervoso Central , Modelos Animais de Doenças , Neuroglia , Pesquisa Translacional Biomédica , Peixe-Zebra , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...