Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321805

RESUMO

Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.

2.
Plant Cell Environ ; 47(3): 961-975, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044749

RESUMO

Sesuvium portulacastrum (L.) is a halophyte, adapted to grow naturally under saline environments. The ability to use Na and K interchangeably indicated its facultative halophyte nature. No significant growth reduction occurs in seedlings up to 250 mM NaCl, except for curling of the youngest leaf. Within 8 h of salt treatment, seedlings accumulate proline, glycine betaine and other amino acids in both root and shoot. Despite a continued increase of tissue Na content, the number of differentially expressed genes (DEGs) decreases between 8 and 24 h of salt exposure, indicating transcriptional restoration after the initial osmotic challenge. At 8 h, upregulated genes mainly encode transporters and transcription factors, while genes in growth-related pathways such as photosynthesis and ribosome-associated biogenesis are suppressed. Overexpression of SpRAB18 (an ABA-responsive dehydrin), one of the most strongly induced DEGs, in soybean was found to increase biomass in control conditions and the growth benefit was maintained when plants were grown in 100 mM NaCl, indicating conservation of function in halophyte and glycophyte. An open-access transcriptome database "SesuviumKB" (https://cb.imsc.res.in/sesuviumkb/) was developed to involve the scientific community in wide-scale functional studies of S. portulacastrum genes, that could pave the way to engineer salt tolerance in crops.


Assuntos
Aizoaceae , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Fotossíntese , Tolerância ao Sal/genética , Aizoaceae/genética , Aizoaceae/metabolismo , Sódio/metabolismo
3.
Plant J ; 117(1): 264-279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844131

RESUMO

Soil water uptake by roots is a key component of plant water homeostasis contributing to plant growth and survival under ever-changing environmental conditions. The water transport capacity of roots (root hydraulic conductivity; Lpr ) is mostly contributed by finely regulated Plasma membrane Intrinsic Protein (PIP) aquaporins. In this study, we used natural variation of Arabidopsis for the identification of quantitative trait loci (QTLs) contributing to Lpr . Using recombinant lines from a biparental cross (Cvi-0 x Col-0), we show that the gene encoding class 2 Sucrose-Non-Fermenting Protein kinase 2.4 (SnRK2.4) in Col-0 contributes to >30% of Lpr by enhancing aquaporin-dependent water transport. At variance with the inactive and possibly unstable Cvi-0 SnRK2.4 form, the Col-0 form interacts with and phosphorylates the prototypal PIP2;1 aquaporin at Ser121 and stimulates its water transport activity upon coexpression in Xenopus oocytes and yeast cells. Activation of PIP2;1 by Col-0 SnRK2.4 in yeast also requires its protein kinase activity and can be counteracted by clade A Protein Phosphatases 2C. SnRK2.4 shows all hallmarks to be part of core abscisic acid (ABA) signaling modules. Yet, long-term (>3 h) inhibition of Lpr by ABA possibly involves a SnRK2.4-independent inhibition of PIP2;1. SnRK2.4 also promotes stomatal aperture and ABA-induced inhibition of primary root growth. The study identifies a key component of Lpr and sheds new light on the functional overlap and specificity of SnRK2.4 with respect to other ABA-dependent or independent SnRK2s.


Assuntos
Aquaporinas , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Fosforilação , Aquaporinas/genética , Aquaporinas/metabolismo , Água/metabolismo
4.
New Phytol ; 241(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37565540

RESUMO

Early responses of plants to environmental stress factors prevent damage but can delay growth and development in fluctuating conditions. Optimising these trade-offs requires tunability of plant responsiveness to environmental signals. We have previously reported that Histone Deacetylase Complex 1 (HDC1), which interacts with multiple proteins in histone deacetylation complexes, regulates the stress responsiveness of Arabidopsis seedlings, but the underlying mechanism remained elusive. Here, we show that HDC1 attenuates transcriptome re-programming in salt-treated seedlings, and we identify two genes (LEA and MAF5) that inhibit seedling establishment under salt stress downstream of HDC1. HDC1 attenuates their transcriptional induction by salt via a dual mechanism involving H3K9/14 deacetylation and H3K27 trimethylation. The latter, but not the former, was also abolished in a triple knockout mutant of the linker histone H1, which partially mimics the hypersensitivity of the hdc1-1 mutant to salt stress. Although stress-induced H3K27me3 accumulation required both H1 and HDC1, it was not fully recovered by complementing hdc1-1 with a truncated, H1-binding competent HDC1 suggesting other players or independent inputs. The combined findings reveal a dual brake function of HDC1 via regulating both active and repressive epigenetic marks on stress-inducible genes. This natural 'anti-panic' device offers a molecular leaver to tune stress responsiveness in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Histonas/metabolismo , Plântula , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Appl Microbiol Biotechnol ; 107(19): 6121-6134, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552253

RESUMO

Microorganisms produce extracellular polymeric substances (EPS, also known as exopolysaccharides) of diverse composition and structure. The biochemical and biophysical properties of these biopolymers enable a wide range of industrial applications. EPS from cyanobacteria are particularly versatile as they incorporate a larger number and variety of building blocks and adopt more complex structures than EPS from other organisms. However, the genetic makeup and regulation of EPS biosynthetic pathways in cyanobacteria are poorly understood. Here, we measured the effect of changing culture media on titre and composition of EPS released by Synechocystis sp. PCC 6803, and we integrated this information with transcriptomic data. Across all conditions, daily EPS productivity of individual cells was highest in the early growth phase, but the total amount of EPS obtained from the cultures was highest in the later growth phases due to accumulation. Lowering the magnesium concentration in the media enhanced per-cell productivity but the produced EPS had a lower total sugar content. Levels of individual monosaccharides correlated with specific culture media components, e.g. xylose with sulfur, glucose and N-acetyl-galactosamine with NaCl. Comparison with RNA sequencing data suggests a Wzy-dependent biosynthetic pathway and a protective role for xylose-rich EPS. This multi-level analysis offers a handle to link individual genes to the dynamic modulation of a complex biopolymer. KEY POINTS: • Synechocystis exopolysaccharide amount and composition depends on culture condition • Production rate and sugar content can be modulated by Mg and S respectively • Wzy-dependent biosynthetic pathway and protective role proposed for xylose-rich EPS.


Assuntos
Synechocystis , Synechocystis/genética , Synechocystis/química , Xilose/metabolismo , Biopolímeros/metabolismo , Monossacarídeos/metabolismo , Polissacarídeos Bacterianos/química
6.
Photochem Photobiol Sci ; 22(10): 2341-2356, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37505444

RESUMO

UV-B radiation regulates numerous morphogenic, biochemical and physiological responses in plants, and can stimulate some responses typically associated with other abiotic and biotic stimuli, including invertebrate herbivory. Removal of UV-B from the growing environment of various plant species has been found to increase their susceptibility to consumption by invertebrate pests, however, to date, little research has been conducted to investigate the effects of UV-B on crop susceptibility to field pests. Here, we report findings from a multi-omic and genetic-based study investigating the mechanisms of UV-B-stimulated resistance of the crop, Brassica napus (oilseed rape), to herbivory from an economically important lepidopteran specialist of the Brassicaceae, Plutella xylostella (diamondback moth). The UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), was not found to mediate resistance to this pest. RNA-Seq and untargeted metabolomics identified components of the sinapate/lignin biosynthetic pathway that were similarly regulated by UV-B and herbivory. Arabidopsis mutants in genes encoding two enzymes in the sinapate/lignin biosynthetic pathway, CAFFEATE O-METHYLTRANSFERASE 1 (COMT1) and ELICITOR-ACTIVATED GENE 3-2 (ELI3-2), retained UV-B-mediated resistance to P. xylostella herbivory. However, the overexpression of B. napus COMT1 in Arabidopsis further reduced plant susceptibility to P. xylostella herbivory in a UV-B-dependent manner. These findings demonstrate that overexpression of a component of the sinapate/lignin biosynthetic pathway in a member of the Brassicaceae can enhance UV-B-stimulated resistance to herbivory from P. xylostella.


Assuntos
Arabidopsis , Brassica napus , Mariposas , Animais , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Brassica napus/genética , Herbivoria , Lignina , Mariposas/fisiologia , Plantas
7.
Curr Opin Plant Biol ; 75: 102432, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523900

RESUMO

Priming reflects the capacity of plants to memorise environmental stress experience and improve their response to recurring stress. Epigenetic modifications in DNA and associated histone proteins may carry short-term and long-term memory in the same plant or mediate transgenerational effects, but the evidence is still largely circumstantial. New experimental tools now enable scientists to perform targeted manipulations that either prevent or generate a particular epigenetic modification in a particular location of the genome. Such 'reverse epigenetics' approaches allow for the interrogation of causality between individual priming-induced modifications and their role for altering gene expression and plant performance under recurring stress. Furthermore, combining site-directed epigenetic manipulation with conditional and cell-type specific promoters creates novel opportunities to test and engineer spatiotemporal patterns of priming.


Assuntos
Metilação de DNA , Epigênese Genética , Plantas/genética , Histonas/genética , Estresse Fisiológico/genética
8.
Nat Plants ; 8(11): 1262-1274, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36266492

RESUMO

Stomata of plant leaves open to enable CO2 entry for photosynthesis and close to reduce water loss via transpiration. Compared with photosynthesis, stomata respond slowly to fluctuating light, reducing assimilation and water use efficiency. Efficiency gains are possible without a cost to photosynthesis if stomatal kinetics can be accelerated. Here we show that clustering of the GORK channel, which mediates K+ efflux for stomatal closure in the model plant Arabidopsis, arises from binding between the channel voltage sensors, creating an extended 'sensory antenna' for channel gating. Mutants altered in clustering affect channel gating to facilitate K+ flux, accelerate stomatal movements and reduce water use without a loss in biomass. Our findings identify the mechanism coupling channel clustering with gating, and they demonstrate the potential for engineering of ion channels native to the guard cell to enhance stomatal kinetics and improve water use efficiency without a cost in carbon fixation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estômatos de Plantas/metabolismo , Água/metabolismo , Cinética , Fotossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
9.
New Phytol ; 236(3): 1006-1026, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35909295

RESUMO

Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.


Assuntos
Arabidopsis , Brassicaceae , Aclimatação , Adaptação Fisiológica/genética , Arabidopsis/genética , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética
10.
Plant Cell Environ ; 45(3): 595-601, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092061
11.
iScience ; 24(5): 102429, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997704

RESUMO

The emergence of lipid membranes and embedded proteins was essential for the evolution of cells. Translocon complexes mediate cotranslational recruitment and membrane insertion of nascent proteins, but they already contain membrane-integral proteins. Therefore, a simpler mechanism must exist, enabling spontaneous membrane integration while preventing aggregation of unchaperoned protein in the aqueous phase. Here, we used giant unilamellar vesicles encapsulating minimal translation components to systematically interrogate the requirements for insertion of the model protein proteorhodopsin (PR) - a structurally ubiquitous membrane protein. We show that the N-terminal hydrophobic domain of PR is both necessary and sufficient for cotranslational recruitment of ribosomes to the membrane and subsequent membrane insertion of PR. Insertion of N-terminally truncated PR was restored by artificially attaching ribosomes to the membrane. Our findings offer a self-sufficient protein-inherent mechanism as a possible explanation for effective membrane protein biogenesis in a "pretranslocon" era, and they offer new opportunities for generating artificial cells.

12.
Nat Commun ; 11(1): 218, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924796

RESUMO

Maintaining the right balance between plasticity and robustness in biological systems is important to allow adaptation while maintaining essential functions. Developmental plasticity of plant root systems has been the subject of intensive research, but the mechanisms underpinning robustness remain unclear. Here, we show that potassium deficiency inhibits lateral root organogenesis by delaying early stages in the formation of lateral root primordia. However, the severity of the symptoms arising from this perturbation varies within a natural population of Arabidopsis and is associated with the genetic variation in CLSY1, a key component of the RNA-directed DNA-methylation machinery. Mechanistically, CLSY1 mediates the transcriptional repression of a negative regulator of root branching, IAA27, and promotes lateral root development when the auxin-dependent proteolysis pathway fails. Our study identifies DNA-methylation-mediated transcriptional repression as a backup system for post-translational protein degradation which ensures robust development and performance of plants in a challenging environment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metilação de DNA , Ácidos Indolacéticos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , RNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Organogênese Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/citologia , Transdução de Sinais/efeitos dos fármacos
13.
Front Bioeng Biotechnol ; 8: 619055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542914

RESUMO

Cyanobacteria are photosynthetic prokaryotes being developed as sustainable platforms that use renewable resources (light, water, and air) for diverse applications in energy, food, environment, and medicine. Despite the attractive promise that cyanobacteria offer to industrial biotechnology, slow growth rates pose a major challenge in processes which typically require large amounts of biomass and are often toxic to the cells. Two-stage cultivation strategies are an attractive solution to prevent any undesired growth inhibition by de-coupling biomass accumulation (stage I) and the industrial process (stage II). In cyanobacteria, two-stage strategies involve costly transfer methods between stages I and II, and little work has been focussed on using the distinct growth and stationary phases of batch cultures to autoregulate stage transition. In the present study, we identified and characterised a growth phase-specific promoter, which can serve as an auto-inducible switch to regulate two-stage bioprocesses in cyanobacteria. First, growth phase-specific genes were identified from a new RNAseq dataset comparing two growth phases and six nutrient conditions in Synechocystis sp. PCC 6803, including two new transcriptomes for low Mg and low K. A type II NADH dehydrogenase (ndbA) showed robust induction when the cultures transitioned from exponential to stationary phase growth. Behaviour of a 600-bp promoter sequence (PndbA600) was then characterised in detail following the expression of PndbA600:GFP in Synechococcus sp. PCC 7002. Culture density and growth media analyses showed that PndbA600 activation was not dependent on increases in culture density per se but on N availability and on another activating factor present in the spent media of stationary phase cultures (Factor X). PndbA600 deactivation was dependent on the changes in culture density and in either N availability or Factor X. Electron transport inhibition studies revealed a photosynthesis-specific enhancement of active PndbA600 levels. Our findings are summarised in a model describing the environmental regulation of PndbA600, which can now inform the rational design of two-stage industrial processes in cyanobacteria.

15.
ACS Synth Biol ; 7(12): 2833-2840, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30408953

RESUMO

The genetic engineering of microbial cell factories is a sustainable alternative to the chemical synthesis of organic compounds. Successful metabolic engineering often depends on manipulating several enzymes, requiring multiple transformation steps and selection markers, as well as protein assembly and efficient substrate channeling. Naturally occurring fusion genes encoding two or more enzymatic functions may offer an opportunity to simplify the engineering process and to generate ready-made protein modules, but their functionality in heterologous systems remains to be tested. Here we show that heterologous expression of a fusion enzyme from the marine alga Micromonas pusilla, comprising a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase, leads to synthesis of mannitol by Escherichia coli and by the cyanobacterium Synechococcus sp. PCC 7002. Neither of the heterologous systems naturally produce this sugar alcohol, which is widely used in food, pharmaceutical, medical, and chemical industries. While the mannitol production rates obtained by single-gene manipulation were lower than those previously achieved after pathway optimization with multiple genes, our findings show that naturally occurring fusion proteins can offer simple building blocks for the assembly and optimization of recombinant metabolic pathways.


Assuntos
Clorófitas/enzimologia , Escherichia coli/metabolismo , Manitol/metabolismo , Engenharia Metabólica/métodos , Synechococcus/metabolismo , Clorófitas/genética , Monoéster Fosfórico Hidrolases/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Desidrogenase do Álcool de Açúcar/genética
16.
Plant Physiol ; 177(4): 1368-1381, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29895611

RESUMO

If we want to understand how the environment has shaped the appearance and behavior of living creatures, we need to compare groups of individuals that differ in genetic makeup and environment experience. For complex phenotypic features, such as body posture or facial expression in humans, comparison is not straightforward because some of the contributing factors cannot easily be quantified or averaged across individuals. Therefore, computational methods are used to reconstruct representative prototypes using a range of algorithms for filling in missing information and calculating means. The same problem applies to the root system architecture (RSA) of plants. Several computer programs are available for extracting numerical data from root images, but they usually do not offer customized data analysis or visual reconstruction of RSA. We developed Root-VIS, a free software tool that facilitates the determination of means and variance of many different RSA features across user-selected sets of root images. Furthermore, Root-VIS offers several options to generate visual reconstructions of root systems from the averaged data to enable screening and modeling. We confirmed the suitability of Root-VIS, combined with a new version of EZ-Rhizo, for the rapid characterization of genotype-environment interactions and gene discovery through genome-wide association studies in Arabidopsis (Arabidopsis thaliana).


Assuntos
Arabidopsis/genética , Processamento de Imagem Assistida por Computador/métodos , Raízes de Plantas/anatomia & histologia , Software , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
17.
Plant Cell Environ ; 41(10): 2357-2372, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851096

RESUMO

Understanding the interactions between mineral nutrition and disease is essential for crop management. Our previous studies with Arabidopsis thaliana demonstrated that potassium (K) deprivation induced the biosynthesis of jasmonic acid (JA) and increased the plant's resistance to herbivorous insects. Here, we addressed the question of how tissue K affects the development of fungal pathogens and whether sensitivity of the pathogens to JA could play a role for the K-disease relationship in barley (Hordeum vulgare cv. Optic). We report that K-deprived barley plants showed increased leaf concentrations of JA and other oxylipins. Furthermore, a natural tip-to-base K-concentration gradient within leaves of K-sufficient plants was quantitatively mirrored by the transcript levels of JA-responsive genes. The local leaf tissue K concentrations affected the development of two economically important fungi in opposite ways, showing a positive correlation with powdery mildew (Blumeria graminis) and a negative correlation with leaf scald (Rhynchosporium commune) disease symptoms. B. graminis induced a JA response in the plant and was sensitive to methyl-JA treatment whereas R. commune initiated no JA response and was JA insensitive. Our study challenges the view that high K generally improves plant health and suggests that JA sensitivity of pathogens could be an important factor in determining the exact K-disease relationship.


Assuntos
Ascomicetos/metabolismo , Ciclopentanos/metabolismo , Hordeum/imunologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Potássio/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/metabolismo , Hordeum/microbiologia , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase
18.
Curr Opin Plant Biol ; 39: 80-87, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28672167

RESUMO

The spatial arrangement of the plant root system (root system architecture, RSA) is very sensitive to edaphic and endogenous signals that report on the nutrient status of soil and plant. Signalling pathways underpinning RSA responses to individual nutrients, particularly nitrate and phosphate, have been unravelled. Researchers have now started to investigate interactive effects between two or more nutrients on RSA. Several proteins enabling crosstalk between signalling pathways have recently been identified. RSA is potentially an important trait for sustainable and/or marginal agriculture. It is generally assumed that RSA responses are adaptive and optimise nutrient uptake in a given environment, but hard evidence for this paradigm is still sparse. Here we summarize recent advances made in these areas of research.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Estresse Fisiológico
19.
J Exp Bot ; 68(9): 2309-2315, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369641

RESUMO

Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions.


Assuntos
Begoniaceae/fisiologia , Gases/metabolismo , Estômatos de Plantas/fisiologia , Água/fisiologia , Transporte Biológico , Difusão , Folhas de Planta/fisiologia , Especificidade da Espécie
20.
Biochim Biophys Acta Gene Regul Mech ; 1860(1): 106-122, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27487458

RESUMO

The ability of plants to cope with abiotic environmental stresses such as drought, salinity, heat, cold or flooding relies on flexible mechanisms for re-programming gene expression. Over recent years it has become apparent that transcriptional regulation needs to be understood within its structural context. Chromatin, the assembly of DNA with histone proteins, generates a local higher-order structure that impacts on the accessibility and effectiveness of the transcriptional machinery, as well as providing a hub for multiple protein interactions. Several studies have shown that chromatin features such as histone variants and post-translational histone modifications are altered by environmental stress, and they could therefore be primary stress targets that initiate transcriptional stress responses. Alternatively, they could act downstream of stress-induced transcription factors as an integral part of transcriptional activity. A few experimental studies have addressed this 'chicken-and-egg' problem in plants and other systems, but to date the causal relationship between dynamic chromatin changes and transcriptional responses under stress is still unclear. In this review we have collated the existing information on concurrent epigenetic and transcriptional responses of plants to abiotic stress, and we have assessed the evidence using a simple theoretical framework of causality scenarios. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Plantas/genética , Estresse Fisiológico/genética , Transcrição Gênica/genética , Cromatina/genética , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...