Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30533661

RESUMO

We present the complete genome sequences of four phages that infect Paenibacillus larvae, the causative agent of American foulbrood disease in honeybees. The phages were isolated from beehives and beeswax products from Las Vegas, Nevada. The genomes are 50 to 55 kbp long and use the "direct terminal repeats" DNA-packaging strategy.

2.
Bacteriophage ; 6(3): e1220349, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27738559

RESUMO

American Foulbrood Disease, caused by the bacterium Paenibacillus larvae, is one of the most destructive diseases of the honeybee, Apis mellifera. Our group recently published the sequences of 9 new phages with the ability to infect and lyse P. larvae. Here, we characterize the genomes of these P. larvae phages, compare them to each other and to other sequenced P. larvae phages, and putatively identify protein function. The phage genomes are 38-45 kb in size and contain 68-86 genes, most of which appear to be unique to P. larvae phages. We classify P. larvae phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced P. larvae phages, while the remaining 6 do not. We identified functions for roughly half of the P. larvae phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the "cohesive ends with 3' overhang" DNA packaging strategy. This work is the first in-depth study of P. larvae phage genomics, and serves as a marker for future work in this area.

3.
Bacteriophage ; 6(1): e1122698, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144085

RESUMO

American Foulbrood Disease (AFB) is an infection of honeybees caused by the bacterium Paenibacillus larvae. One potential remedy involves using biocontrol, such as bacteriophages (phages) to lyse P. larvae. Therefore, bacteriophages specific for P. larvae were isolated to determine their efficacy in lysing P. larvae cells. Samples from soil, beehive materials, cosmetics, and lysogenized P. larvae strains were screened; of 157 total samples, 28 were positive for at least one P. larvae bacteriophage, with a total of 30. Newly isolated bacteriophages were tested for the ability to lyse each of 11 P. larvae strains. Electron microscopy demonstrated that the phage isolates were from the family Siphoviridae. Seven phages with the broadest host ranges were combined into a cocktail for use in experimental treatments of infected bee larvae; both prophylactic and post-infection treatments were conducted. Results indicated that although both pre- and post-treatments were effective, prophylactic administration of the phages increased the survival of larvae more than post-treatment experiments. These preliminary experiments demonstrate the likelihood that phage therapy could be an effective method to control AFB.

4.
Genome Announc ; 3(5)2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472825

RESUMO

We present here the complete genome sequences of nine phages that infect Paenibacillus larvae, the causative agent of American foulbrood disease in honeybees. The phages were isolated from soil, propolis, and infected bees from three U.S. states. This is the largest number of P. larvae phage genomes sequenced in a single publication to date.

5.
J Insect Sci ; 152015.
Artigo em Inglês | MEDLINE | ID: mdl-26136497

RESUMO

American foulbrood disease has a major impact on honeybees (Apis melifera) worldwide. It is caused by a Gram-positive, spore-forming bacterium, Paenibacillus larvae. The disease can only affect larval honeybees, and the bacterial endospores are the infective unit of the disease. Antibiotics are not sufficient to combat the disease due to increasing resistance among P. larvae strains. Because of the durability and virulence of P. larvae endospores, infections spread rapidly, and beekeepers are often forced to burn beehives and equipment. To date, very little information is available on the use of bacteriophage therapy in rescuing and preventing American foulbrood disease, therefore the goal of this study was to test the efficacy of phage therapy against P. larvae infection. Out of 32 previously isolated P. larvae phages, three designated F, WA, and XIII were tested on artificially reared honeybee larvae infected with P. larvae strain NRRL B-3650 spores. The presence of P. larvae DNA in dead larvae was confirmed by 16S rRNA gene-specific polymerase chain reaction amplification. Survival rates for phage-treated larvae were approximately the same as for larvae never infected with spores (84%), i.e., the phages had no deleterious effect on the larvae. Additionally, prophylactic treatment of larvae with phages before spore infection was more effective than administering phages after infection, although survival in both cases was higher than spores alone (45%). Further testing to determine the optimal combination and concentration of phages, and testing in actual hive conditions are needed.


Assuntos
Bacteriófagos/fisiologia , Abelhas/microbiologia , Paenibacillus/fisiologia , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/virologia , Larva/microbiologia , Larva/virologia , Paenibacillus/virologia
6.
Bacteriophage ; 5(4): e1080787, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26904379

RESUMO

Paenibacillus larvae is the causative agent of American foulbrood (AFB) disease which affects early larval stages during honeybee development. Due to its virulence, transmissibility, capacity to develop antibiotic resistance, and the inherent resilience of its endospores, Paenibacillus larvae is extremely difficult to eradicate from infected hives which often must be burned. AFB contributes to the worldwide decline of honeybee populations, which are crucial for pollination and the food supply. We have isolated a novel bacteriophage lysin, PlyPalA, from the genome of a novel Paenibacillus larvae bacteriophage originally extracted from an environmental sample. PlyPalA has an N-terminal N-acetylmuramoyl-L-alanine amidase catalytic domain and possesses lytic activity against infectious strains of Paenibacillus larvae without harming commensal bacteria known to compose the honeybee larval microbiota. A single dose of PlyPalA rescued 75% of larvae infected with endospores, showing that it represents a powerful tool for future treatment of AFB. This represents the first time that lysins have been tested for therapeutic use in invertebrates.

7.
Appl Environ Microbiol ; 69(8): 5006-10, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12902302

RESUMO

Environmental conditions which define boundaries for biofilm production could provide useful ecological information for biofilm models. A practical use of defined conditions could be applied to the high-level nuclear waste repository at Yucca Mountain. Data for temperature and humidity conditions indicate that decreases in relative humidity or increased temperature severely affect biofilm formation on three candidate canister metals.


Assuntos
Biofilmes/crescimento & desenvolvimento , Umidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA