Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 183: 93-101, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30149233

RESUMO

Hyaluronic acid (HA) is found naturally in synovial fluid and is utilized therapeutically to treat osteoarthritis (OA). Here, we employed a peptide-polymer cartilage coating platform to localize HA to the cartilage surface for the purpose of treating post traumatic osteoarthritis. The objective of this study was to increase efficacy of the peptide-polymer platform in reducing OA progression in a mouse model of post-traumatic OA without exogenous HA supplementation. The peptide-polymer is composed of an HA-binding peptide (HABP) conjugated to a heterobifunctional poly (ethylene glycol) (PEG) chain and a collagen binding peptide (COLBP). We created a library of different peptide-polymers and characterized their HA binding properties in vitro using quartz crystal microbalance (QCM-D) and isothermal calorimetry (ITC). The peptide polymers were further tested in vivo in an anterior cruciate ligament transection (ACLT) murine model of post traumatic OA. The peptide-polymer with the highest affinity to HA as tested by QCM-D (∼4-fold greater binding compared to other peptides tested) and by ITC (∼3.8-fold) was HABP2-8-arm PEG-COLBP. Biotin tagging demonstrated that HABP2-8-arm PEG-COLBP localizes to both cartilage defects and synovium. In vivo, HABP2-8-arm PEG-COLBP treatment and the clinical HA comparator Orthovisc lowered levels of inflammatory genes including IL-6, IL-1B, and MMP13 compared to saline treated animals and increased aggrecan expression in young mice. HABP2-8-arm PEG-COLBP and Orthovisc also reduced pain as measured by incapacitance and hotplate testing. Cartilage degeneration as measured by OARSI scoring was also reduced by HABP2-8-arm PEG-COLBP and Orthovisc. In aged mice, HABP2-8-arm PEG-COLBP therapeutic efficacy was similar to its efficacy in young mice, but Orthovisc was less efficacious and did not significantly improve OARSI scoring. These results demonstrate that HABP2-8-arm PEG-COLBP is effective at reducing PTOA progression.


Assuntos
Portadores de Fármacos/química , Ácido Hialurônico/farmacologia , Oligopeptídeos/química , Osteoartrite/tratamento farmacológico , Polietilenoglicóis/química , Animais , Ligamento Cruzado Anterior/efeitos dos fármacos , Ligamento Cruzado Anterior/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Colágeno/química , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Interleucinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Nanopartículas/química , Osteoartrite/patologia , Bibliotecas de Moléculas Pequenas , Membrana Sinovial/metabolismo
2.
J Biol Chem ; 286(10): 8188-8196, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21209075

RESUMO

Huntington disease results from an expanded polyglutamine region in the N terminus of the huntingtin protein. HD pathology is characterized by neuronal degeneration and protein inclusions containing N-terminal fragments of mutant huntingtin. Structural information is minimal, though it is believed that mutant huntingtin polyglutamine adopts ß structure upon conversion to a toxic form. To this end, we designed mammalian cell expression constructs encoding compact ß variants of Htt exon 1 N-terminal fragment and tested their ability to aggregate and induce toxicity in cultured neuronal cells. In parallel, we performed molecular dynamics simulations, which indicate that constructs with expanded polyglutamine ß-strands are stabilized by main-chain hydrogen bonding. Finally, we found a correlation between the reactivity to 3B5H10, an expanded polyglutamine antibody that recognizes a compact ß rich hairpin structure, and the ability to induce cell toxicity. These data are consistent with an important role for a compact ß structure in mutant huntingtin-induced cell toxicity.


Assuntos
Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Linhagem Celular , Humanos , Proteína Huntingtina , Ligação de Hidrogênio , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estrutura Secundária de Proteína
3.
Eur J Biochem ; 270(5): 849-60, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12603318

RESUMO

The high-resolution 3D structure of the octapeptide hormone angiotensin II (AII) in aqueous solution has been obtained by simulated annealing calculations, using high-resolution NMR-derived restraints. After final refinement in explicit water, a family of 13 structures was obtained with a backbone RMSD of 0.73 +/- 0.23 A. AII adopts a fairly compact folded structure, with its C-terminus and N-terminus approaching to within approximately 7.2 A of each other. The side chains of Arg2, Tyr4, Ile5 and His6 are oriented on one side of a plane defined by the peptide backbone, and the Val3 and Pro7 are pointing in opposite directions. The stabilization of the folded conformation can be explained by the stacking of the Val3 side chain with the Pro7 ring and by a hydrophobic cluster formed by the Tyr4, Ile5 and His6 side chains. Comparison between the NMR-derived structure of AII in aqueous solution and the refined crystal structure of the complex of AII with a high-affinity mAb (Fab131) [Garcia, K.C., Ronco, P.M., Verroust, P.J., Brunger, A.T., Amzel, L.M. (1992) Science257, 502-507] provides important quantitative information on two common structural features: (a) a U-shaped structure of the Tyr4-Ile5-His6-Pro7 sequence, which is the most immunogenic epitope of the peptide, with the Asp1 side chain oriented towards the interior of the turn approaching the C-terminus; (b) an Asx-turn-like motif with the side chain aspartate carboxyl group hydrogen-bonded to the main chain NH group of Arg2. It can be concluded that small rearrangements of the epitope 4-7 in the solution structure of AII are required by a mean value of 0.76 +/- 0.03 A for structure alignment and approximately 1.27 +/- 0.02 A for sequence alignment with the X-ray structure of AII bound to the mAb Fab131. These data are interpreted in terms of a biological "nucleus" conformation of the hormone in solution, which requires a limited number of structural rearrangements for receptor-antigen recognition and binding.


Assuntos
Angiotensina II/metabolismo , Anticorpos Monoclonais/imunologia , Angiotensina II/química , Angiotensina II/imunologia , Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...