Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 292(6): C2021-31, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17287367

RESUMO

We have shown that cold perfusion of hearts generates reactive oxygen and nitrogen species (ROS/RNS). In this study, we determined 1) whether ROS scavenging only during cold perfusion before global ischemia improves mitochondrial and myocardial function, and 2) which ROS leads to compromised cardiac function during ischemia and reperfusion (I/R) injury. Using fluorescence spectrophotometry, we monitored redox balance (NADH and FAD), O(2)(*-) levels and mitochondrial Ca(2+) (m[Ca(2+)]) at the left ventricular wall in 120 guinea pig isolated hearts divided into control (Con), MnTBAP (a superoxide dismutase 2 mimetic), MnTBAP (M) + catalase (C) + glutathione (G) (MCG), C+G (CG), and N(G)-nitro-L-arginine methyl ester (L-NAME; a nitric oxide synthase inhibitor) groups. After an initial period of warm perfusion, hearts were treated with drugs before and after at 27 degrees C. Drugs were washed out before 2 h at 27 degrees C ischemia and 2 h at 37 degrees C reperfusion. We found that on reperfusion the MnTBAP group had the worst functional recovery and largest infarction with the highest m[Ca(2+)], most oxidized redox state and increased ROS levels. The MCG group had the best recovery, the smallest infarction, the lowest ROS level, the lowest m[Ca(2+)], and the most reduced redox state. CG and L-NAME groups gave results intermediate to those of the MnTBAP and MCG groups. Our results indicate that the scavenging of cold-induced O(2)(*-) species to less toxic downstream products additionally protects during and after cold I/R by preserving mitochondrial function. Because MnTBAP treatment showed the worst functional return along with poor preservation of mitochondrial bioenergetics, accumulation of H(2)O(2) and/or hydroxyl radicals during cold perfusion may be involved in compromised function during subsequent cold I/R injury.


Assuntos
Cálcio/metabolismo , Sequestradores de Radicais Livres/farmacologia , Isquemia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Catalase/farmacologia , Feminino , Glutationa/farmacologia , Cobaias , Masculino , Manganês/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Oxirredução , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...