Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2407019, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158940

RESUMO

Electrolyte plays crucial roles in electrochemical CO2 reduction reaction (e-CO2RR), yet how it affects the e-CO2RR performance still being unclarified. In this work, it is reported that Sn-Zn hybrid oxide enables excellent CO2-to-HCOO- conversion in KHCO3 with a HCOO- Faraday efficiency ≈89%, a yield rate ≈0.58 mmol cm-2 h-1 and a stability up to ≈60 h at -0.93 V, which are higher than those in NaHCO3 and K2SO4. Systematical characterizations unveil that the surface reconstruction on Sn-Zn greatly depends on the electrolyte using: the Sn-SnO2/ZnO, the ZnO encapsulated Sn-SnO2/ZnO and the Sn-SnO2/Zn-ZnO are reconstructed on the surface by KHCO3, NaHCO3 and K2SO4, respectively. The improved CO2-to-HCOO- performance in KHCO3 is highly attributed to the reconstructed Sn-SnO2/ZnO, which can enhance the charge transportation, promote the CO2 adsorption and optimize the adsorption configuration, accumulate the protons by enhancing water adsorption/cleavage and limit the hydrogen evolution. The findings may provide insightful understanding on the relationship between electrolyte and surface reconstruction in e-CO2RR and guide the design of novel electrocatalyst for effective CO2 reduction.

2.
J Colloid Interface Sci ; 671: 434-440, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38815378

RESUMO

Photoelectrochemical (PEC) water splitting is an effective and sustainable method for solar energy harvesting. However, the technology is still far away from practical application because of the high cost and low efficiency. Here, we report a low-cost, stable and high-performing industrial-Si-based photoanode (n-Indus-Si/Co-2mA-xs) that is fabricated by simple electrodeposition. Systematic characterizations such as scanning electron microscopy, X-ray photoelectron spectroscopy have been employed to characterize and understand the working mechanisms of this photoanode. The uniform and adherent dispersion of co-catalyst particles result in high built-in electric field, reduced charge transfer resistance, and abundant active sites. The core-shell structure of co-catalyst particles is formed after the activation process. The reconstructed morphology and modified chemical states of the surface co-catalyst particles improve the separation and transfer of charges, and the reaction kinetics for water oxidation greatly. Our work demonstrates that large-scale PEC water splitting can be achieved by engineering the industrial-Si-based photoelectrode, which shall guide the development of solar energy conversion in the industry.

3.
Small ; 20(3): e2304376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649206

RESUMO

Green hydrogen is considered to be the key for solving the emerging energy and environmental issues. The photoelectrochemical (PEC) process for the production of green hydrogen has been widely investigated because solar power is clean and renewable. However, mass production in this way is still far away from reality. Here, a Si photoanode is reported with CoOx as co-catalyst for efficient water oxidation. It is found that a high photovoltage of 350 mV can be achieved in 1.0 m K3 BO3 . Importantly, the photovoltage can be further increased to 650 mV and the fill factor of 0.62 is obtained in 1.0 m K3 BO3 by incorporating Mo into CoOx . The Mo-incorporated photoanode is also highly stable. It is shown that the incorporation of Mo can reduce the particle size of co-catalyst on the Si surface, improve the particle-distribution uniformity, and increase the density of particles, which can effectively enhance the light absorption and the electrochemical active surface area. Importantly, the Mo-incorporation results in high energy barrier in the heterojunction. All of these factors are attributed to improved the PEC performance. These findings may provide new strategies to maximize the solar-to-fuel efficiency by tuning the co-catalysts on the Si surface.

4.
J Colloid Interface Sci ; 650(Pt A): 807-815, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450969

RESUMO

The development of well-defined nanomaterials as non-noble metal electrocatalysts has broad application prospect for hydrogen generation technology. Recently, multi-metal electrocatalysts for hydrogen evolution reaction (HER) have attracted extensive attention due to their high catalytic performance arising from the synergistic effect of multi-metal interaction. However, most multi-metal catalysts suffer from the limited synergistic effect because of poor interfacial compatibility between different components. Here, a novel multi-metal catalyst (Ni/MoO2@CoFeOx) nanosheet with a crystalline/amorphous structure is demonstrated, which shows high HER activity. Ni/MoO2@CoFeOx exhibits an ultra-low overpotential of 18, 39, and 93 mV at 10 mA cm-2 in alkaline water, alkaline seawater and natural seawater, respectively, which outperformances most of the state-of-the-art non-noble metal compounds. In addition, the catalyst shows exceptional stability under 500 mA cm-2 in alkaline solution. In-situ Raman and other advanced structural characterization confirms the excellent catalytic activity is mainly contributed by: (1) the strong synergistic effect of multi-metal components provides multiple active sites in the catalytic process; (2) the crystalline/amorphous interface in Ni/MoO2@CoFeOx boosts the catalytically active sites and structure stability; (3) the crystalline phase enhances the intrinsic conductivity greatly; and (4) the amorphous phase provides abundant unsaturated sites for improved intrinsic catalytic activity. This work provides a feasible way to design electrocatalyst with high activity and stability for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA