Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1889, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424127

RESUMO

Covalent organic frameworks (COFs) are ideal templates for constructing metal-free catalysts for the oxygen reduction reaction due to their highly tuneable skeletons and controllable porous channels. However, the development of highly active sites within COFs remains challenging due to their limited electron-transfer capabilities and weak binding affinities for reaction intermediates. Herein, we constructed highly active catalytic centres by modulating the electronic states of the pyridine nitrogen atoms incorporated into the frameworks of COFs. By incorporating different pyridine units (such as pyridine, ionic pyridine, and ionic imidazole units), we tuned various properties including dipole moments, reductive ability, hydrophilicity, and binding affinities towards reaction intermediates. Notably, the ionic imidazole COF (im-PY-BPY-COF) exhibited greater activity than the neutral COF (PY-BPY-COF) and ionic pyridine COF (ion-PY-BPY-COF). Specifically, im-PY-BPY-COF demonstrated a half-wave potential of 0.80 V in 0.1 M KOH, outperforming other metal-free COFs. Theoretical calculations and in situ synchrotron radiation Fourier transform infrared spectroscopy confirmed that the carbon atoms in the ionic imidazole rings improved the activity by facilitating binding of the intermediate OOH* and promoting the desorption of OH*. This study provides new insights into the design of highly active metal-like COF catalysts.

2.
Small ; : e2310163, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389176

RESUMO

The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d-O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2 @0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.

3.
Small Methods ; 8(3): e2300816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926773

RESUMO

The spin states of active sites have a significant impact on the adsorption/desorption ability of the reaction intermediates during the oxygen evolution reaction (OER). Sulfide spinel is not generally considered a highly efficient OER catalyst owing to the low spin state of Co3+ and the lack of unpaired electrons available for adsorption of reaction intermediates. Herein, it is proposed a novel Nd-evoked valence electronic adjustment strategy to engineer the spin state of Co ions. The unique f-p-d orbital electronic coupling effect stimulates the rearrangement of Co d orbital electrons and increases the eg electron filling to achieve high-spin state Co ions, which promotes charge transport by propagating a spin channel and generates a high number of active sites for intermediate adsorption. The optimized CuCo1.75 Nd0.25 S4 catalyst exhibits outstanding electrocatalytic properties with a low overpotential of 320 mV at 500 mA cm-2 and a 48 h stability at 300 mA cm-2 . In situ synchrotron radiation infrared spectra confirm the quick accumulation of key *OOH and *O intermediates. This work deepens the comprehensive understanding of the relationship between OER activity and spin configurations of Co ions and offers a new design strategy for spinel compound catalysts.

4.
Small ; 19(49): e2304303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566779

RESUMO

Single-atom Fe catalysts are considered as the promising catalysts for oxygen reduction reaction (ORR). However, the high electronegativity of the symmetrical coordination N atoms around Fe site generally results in too strong adsorption of *OOH intermediates on the active site, severely limiting the catalytic performance. Herein, a "heteroatom pair synergetic modulation" strategy is proposed to tailor the coordination environment and spin state of Fe sites, enabling breaking the shackles of unsuitable adsorption of intermediate products on the active centers toward a more efficient ORR pathway. The unsymmetrically Co and B heteroatomic coordinated Fe single sites supported on an N-doped carbon (Fe─B─Co/NC) catalyst perform excellent ORR activity with high half-wave potential (E1/2 ) of 0.891 V and a large kinetic current density (Jk ) of 60.6 mA cm-2 , which is several times better than those of commercial Pt/C catalysts. By virtue of in situ electrochemical impedance and synchrotron infrared spectroscopy, it is observed that the optimized Fe sites can effectively accelerate the evolution of O2 into the *O intermediate, overcoming the sluggish O─O bond cleavage of the *OOH intermediate, which is responsible for fast four-electron reaction kinetics.

5.
Chem Commun (Camb) ; 59(64): 9706-9709, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37470085

RESUMO

A telluride-spinel ZnCo2Te4/NF catalyst delivered an overpotential (η) of only 370 mV to achieve a current density of 100 mA cm-2 and displayed no significant degradation of performance during 50 h of operation. By virtue of in situ synchrotron infrared spectroscopic detection, an accumulation of key OOH* intermediates over the active site was observed, suggesting that the reaction followed the efficient adsorbate evolution mechanism (AEM) for water oxidation.

6.
Adv Sci (Weinh) ; 10(4): e2205031, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417569

RESUMO

Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the core reactions of a series of advanced modern energy and conversion technologies, such as fuel cells and metal-air cells. Among all kinds of oxygen electrocatalysts that have been reported, single-atom catalysts (SACs) offer great development potential because of their nearly 100% atomic utilization, unsaturated coordination environment, and tunable electronic structure. In recent years, numerous SACs with enriched active centers and asymmetric coordination have been successfully constructed by regulating their coordination environment and electronic structure, which has brought the development of atomic catalysts to a new level. This paper reviews the improvement of SACs brought by atom-level interface engineering. It starts with the introduction of advanced techniques for the characterizations of SACs. Subsequently, different design strategies that are applied to adjust the metal active center and first coordination sphere of SACs and then enhance their oxygen electrocatalysis performance are systematically illustrated. Finally, the future development of SACs toward ORR and OER is discussed and prospected.

7.
Small Methods ; 6(7): e2200408, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35607754

RESUMO

Atomically dispersed metal catalysts have been widely used in electrocatalysis because of their outstanding catalytic activity and high atomic utilization efficiency. As an extension of single-atom catalysts (SACs), dual-atom catalysts (DACs) provide new insights for the development of atomic-scale catalysts. Higher metal loading and more flexible active sites endow DACs with improved catalytic performance as well as optimized reaction mechanism model. In this review, DACs are firstly classified according to their configurations and metal sites. Subsequently, the synthetic strategies and characterization techniques of DACs are introduced. Furthermore, the applications of DACs are exemplified in various electrocatalytic reactions, including oxygen reduction reaction, oxygen evolution reaction and carbon dioxide reduction reaction. Finally, the prospects to be expected and challenges to be faced with are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...