Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 220: 106787, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35436660

RESUMO

BACKGROUND AND OBJECTIVE: Automatic vessel segmentation from X-ray angiography images is an important research topic for the diagnosis and treatment of cardiovascular disease. The main challenge is how to extract continuous and completed vessel structures from XRA images with poor quality and high complexity. Most existing methods predominantly focus on pixel-wise segmentation and overlook the geometric features, resulting in breaking and absence in segmentation results. To improve the completeness and accuracy of vessel segmentation, we propose a recursive joint learning network embedded with geometric features. METHODS: The network joins the centerline- and direction-aware auxiliary tasks with the primary task of segmentation, which guides the network to explore the geometric features of vessel connectivity. Moreover, the recursive learning strategy is designed by passing the previous segmentation result into the same network iteratively to improve segmentation. To further enhance connectivity, we present a complementary-task ensemble strategy by fusing the outputs of the three tasks for the final segmentation result with majority voting. RESULTS: To validate the effectiveness of our method, we conduct qualitative and quantitative experiments on the XRA images of the coronary artery and aorta including aortic arch, thoracic aorta, and abdominal aorta. Our method achieves F1 scores of 85.61±3.48% for the coronary artery, 89.02±2.89% for the aortic arch, 88.22±3.33% for the thoracic aorta, and 83.12±4.61% for the abdominal aorta. CONCLUSIONS: Compared with six state-of-the-art methods, our method shows the most complete and accurate vessel segmentation results.


Assuntos
Angiografia , Vasos Coronários , Algoritmos , Aorta , Processamento de Imagem Assistida por Computador/métodos , Tórax , Raios X
2.
Phys Med Biol ; 66(15)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34157702

RESUMO

Vessel centerline extraction from x-ray angiography images is essential for vessel structure analysis in the diagnosis of coronary artery disease. However, complete and continuous centerline extraction remains a challenging task due to image noise, poor contrast, and complexity of vessel structure. Thus, an iterative multi-path search framework for automatic vessel centerline extraction is proposed. First, the seed points of the vessel structure are detected and sorted by confidence. With the ordered seed points, multi-bifurcation centerline is searched through multi-path propagation of wavefront and accumulated voting. Finally, the centerline is further extended piecewise by wavefront propagation on the basis of keypoint detection. The latter two steps are performed alternately to obtain the final centerline result. The proposed method is qualitatively and quantitatively evaluated on 1260 synthetic images and 50 clinical angiography images. The results demonstrate that our method has a highF1score of 87.8% ± 2.7% for the angiography images and achieves accurate and continuous results of vessel centerline extraction.


Assuntos
Algoritmos , Angiografia , Angiografia Coronária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA