Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 10(6): 259, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32432020

RESUMO

The domestic yak (Bos grunniens) from the Qinghai-Tibet Plateau is an important animal model in high-altitude adaptation studies. Here, we performed the genome-wide selective sweep analysis to identify the candidate copy number variation (CNV) for the high-altitude adaptation of yaks. A total of 531 autosomal CNVs were determined from 29 yak genome-wide resequencing data (15 high- and 14 low-altitude distributions) by using a CNV caller with a CNV identification interval > 5 kb, CNV silhouette score > 0.7, and minimum allele frequency > 0.05. Most high-frequency CNVs were located at the exonic (44.63%) and intergenic (46.52%) regions. In accordance with the results of the selective sweep analysis, 7 candidate CNVs were identified from the interaction of the top 20 CNVs with highest divergence from the F ST and V ST between the low (LA) and high (HA) altitudes. Five genes (i.e., GRIK4, IFNLR1, LOC102275985, GRHL3, and LOC102275713) were also annotated from the seven candidate CNVs and their upstream and downstream ranges at 300 kb. GRIK4, IFNLR1, and LOC102275985 were enriched in five known signal pathways, namely, glutamatergic synapse, JAK-STAT signaling pathway, cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and olfactory transduction. These pathways are involved in the environmental adaptability and various physiological functions of animals, especially the physiological regulation under a hypoxic environment. The results of this study advanced the understanding of CNV as an important genomic structure variant type that contributes to HA adaptation and helped further explain the molecular mechanisms underlying the altitude adaptability of yaks.

2.
3 Biotech ; 9(9): 336, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31475088

RESUMO

Litter size is considered to be the most important index for estimating domestic animal productivity. The number of indigenous goats in China with higher litter sizes than those of commercial breeds in other countries may be helpful for accelerating genetic improvements in goat breeding. We performed a genome-wide selective sweep analysis of 31 Dazu black goats with extreme standard deviation in litter size within the third fetus to identify significant genomic regions and candidate genes through different analyses. The analysis identified a total of 33,917,703 variants, including 32,262,179 SNPs and 1,655,524 indels. In addition, two novel candidate genes (LRP1B and GLRB), which are related to litter size, were obtained with π, Tajima's D, πA/πB, and F ST at the individual level with a 95% threshold for each parameter. These two genes were annotated in five GO terms (localization, binding, macromolecular complex, membrane part, and membrane) and two pathways (long-term depression and neuroactive ligand-receptor interaction pathway). Regarding the result of linkage disequilibrium (LD) analysis, in LRP1B and GRID2, the high-yield Dazu black goats exhibit significantly different LD patterns from low-yield goats. Litter size variability has low heritability and is related to multiple complex factors found in domestic animals. Obtaining a clear explanation and significant signal by genome-wide selective sweep analysis with a small sample size is difficult. However, we investigated some candidate genes, particularly LRP1B and GLRB, which may provide useful information for further research.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25162469

RESUMO

The population of domestic yak, Tianzhu white yak, from Tibetan area in China is considered as a rare Bos grunniens species. We first determined and annotated its complete mitochondrial genome. The mitogenome is 16,319 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and a control region. As in other mammals, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. Its overall base composition is A: 33.7%, T: 27.2%, C: 25.8% and G: 13.2%. The complete mitogenome of the new subspecies of Bos grunniens could provide an important data to further explore the taxonomic status of the subspecies.


Assuntos
Bovinos/genética , Genoma Mitocondrial , Mitocôndrias/genética , Animais , Animais Domésticos/classificação , Animais Domésticos/genética , Composição de Bases , Bovinos/classificação , Tamanho do Genoma , Filogenia , Análise de Sequência de DNA/métodos , Tibet
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 3826-3827, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-25186658

RESUMO

The Chinese Yakow, Bos primigenius taurus × Bos grunniens, is a large and commercially important hybrid in family Bovidae. We first determined and annotated its complete mitochondrial genome. The mitogenome is 16,322 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and a control region. As in other mammals, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. Its overall base composition is A: 33.7%, T: 27.3%, C: 25.8% and G: 13.2%. The complete mitogenome of Yakow (B. p. taurus × B. grunniens) could provide an important data to further explore the taxonomic status of Yakow (B. p. taurus × B. grunniens) in B. grunniens and enrich the genetic information or evolutionary history of the Bovidae.


Assuntos
Bovinos/genética , Genoma Mitocondrial/genética , Animais , Composição de Bases , Sequência de Bases , Bovinos/classificação , China , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas Mitocondriais/genética , Fases de Leitura Aberta/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...