Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 174466, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964386

RESUMO

Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the molecular mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.

2.
Environ Res ; 253: 119056, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38704005

RESUMO

Ship ballast water promoting the long-range migration of antibiotic resistance genes (ARGs) has raised a great concern. This study attempted to reveal ARGs profile in ballast water and decipher their hosts and potential risk using metagenomic approaches. In total, 710 subtypes across 26 ARG types were identified among the ballast water samples from 13 ships of 11 countries and regions, and multidrug resistance genes were the most dominant ARGs. The composition of ARGs were obviously different across samples, and only 5% of the ARG subtypes were shared by all samples. Procrustes analysis showed the bacterial community contributed more than the mobile genetic elements (MGEs) in shaping the antibiotic resistome. Further, 79 metagenome-assembled genomes (46 genera belong to four phyla) were identified as ARG hosts, with predominantly affiliated with the Proteobacteria. Notably, potential human pathogens (Alcaligenes, Mycolicibacterium, Rhodococcus and Pseudomonas) were also recognized as the ARG hosts. Above 30% of the ARGs hosts contained the MGEs simultaneously, supporting a pronounced horizontal gene transfer capability. A total of 43 subtypes (six percent of overall ARGs) of ARGs were assessed with high-risk, of which 23 subtypes belonged to risk Rank I (including rsmA, ugd, etc.) and 20 subtypes to the risk Rank II (including aac(6)-I, sul1, etc.). In addition, antibiotic resistance risk index indicated the risk of ARGs in ballast water from choke points of maritime trade routes was significantly higher than that from other regions. Overall, this study offers insights for risk evaluation and management of antibiotic resistance in ballast water.


Assuntos
Bactérias , Navios , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenômica , Microbiologia da Água , Antibacterianos/farmacologia , Metagenoma , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética
3.
Mar Pollut Bull ; 194(Pt B): 115336, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542926

RESUMO

Accurate detecting bacterial communities in ballast water and sediments supports risk management. This study uses full-length 16S rRNA gene sequencing to investigate the bacterial communities in ballast water and sediments, focusing on detecting pathogens. The results indicate that full-length sequencing more accurately reveals the species diversity. There is a significant difference (P < 0.05) in bacterial communities between ballast water and sediments, despite both being dominated by the Proteobacteria phylum. Thirty human and fish pathogens were identified by full-length sequencing, yet only five pathogens were detected from V3-V4 sequencing. Notably, emerging pathogens such as Citrobacter freundii and Nocardia nova are detected in samples, which are harmful to aquaculture and human health. Several opportunistic pathogens were also identified. In summary, this study provides important insights into the bacterial communities in ballast water and sediments, highlighting the need for strict management.


Assuntos
Navios , Água , Humanos , RNA Ribossômico 16S/genética , Genes de RNAr , Bactérias/genética
4.
Mar Environ Res ; 190: 106115, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37540963

RESUMO

Ballast water is one of the main vectors for the spread of harmful organisms among geologically isolated waters. However, the successional processes of microbial functions and assembly processes in ballast water during the long-term shipping voyage remain unclear. In this study, the compositions, ecological functions, community assembly, and potential environmental drivers of bacteria and microeukaryotes were investigated in simulated ballast water microcosms for 120 days. The results showed that the diversity and compositions of the bacterial and microeukaryotic communities varied significantly in the initial 40 days (T0∼T40 samples) and then gradually converged. The relative abundance of Proteobacteria showed a distinct tendency to decrease (87.90%-41.44%), while that of Ascomycota exhibited an increasing trend (6.35%-62.12%). The functional groups also varied significantly over time and could be related to the variations of the microbial community. The chemoheterotrophy and aerobic chemoheterotrophy functional groups for bacteria decreased from 44.80% to 28.02% and from 43.77% to 25.39%, respectively. Additionally, co-occurrence network analysis showed that the structures of the bacterial community in T60∼T120 samples were more stable than those in T0∼T40 samples. Stochastic processes also significantly affected the community assembly of bacteria and microeukaryotes. pH played the most significant role in driving the structures and assembly processes of the bacterial and microeukaryotic communities. The results of this study could aid in the understanding of variations in the functions and ecological processes of bacterial and microeukaryotic communities in ballast water over time and provide a theoretical basis for its management.


Assuntos
Microbiota , Água , Bactérias
5.
Environ Res ; 218: 114990, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463990

RESUMO

Ballast water and sediments can serve as prominent vectors for the widespread dispersal of pathogens between geographically distant areas. However, information regarding the diversity and distribution of the bacterial pathogens in ballast water and sediments is highly limited. In this study, using high-throughput sequencing and quantitative PCR, we investigated the composition and abundance of potential pathogens, and their associations with indicator microorganisms. We accordingly detected 48 potential bacterial pathogens in the assessed ballast water and sediments, among which there were significant differences in the compositions and abundances of pathogenic bacterial communities characterizing ballast water and sediments. Rhodococcus erythropolis, Bacteroides vulgatus, and Vibrio campbellii were identified as predominant pathogens in ballast water, whereas Pseudomonas stutzeri, Mycobacterium paragordonae, and Bacillus anthracis predominated in ballast sediments. Bacteroidetes, Vibrio alginolyticus, Vibrio parahaemolyticus, and Escherichia coli were generally detected with median values of 8.54 × 103-1.22 × 107 gene copies (GC)/100 mL and 1.16 × 107-3.97 × 109 GC/100 g in ballast water and sediments, respectively. Notably, the concentrations of Shigella sp., Staphylococcus aureus, and V. alginolyticus were significantly higher in ballast sediments than in the water. In addition, our findings tend to confirm that the indicator species specified by the International Maritime Organization (IMO) might underestimate the pathogen risk in the ballast water and sediments, as these bacteria were unable to predict some potential pathogens assessed in this study. In summary, this study provides a comprehensive insight into the spectrum of the potential pathogens that transferred by ship ballast tanks and emphasizes the need for the implementation of IMO convention on ballast sediment management.


Assuntos
Bacteroidetes , Água , Prevalência , Navios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...