Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36614348

RESUMO

Anomalous solid-like liquids at the solid-liquid interface have been recently reported. The mechanistic factors contributing to these anomalous liquids and whether they can stably exist at high vacuum are interesting, yet unexplored, questions. In this paper, thin slices of silica tubes soaked in hexadecane were observed under a transmission electron microscope at room temperature. The H-spectrum of hexadecane in the microtubules was measured by nuclear magnetic resonance. On the interior surface of these silica tubes, 0.2-30 µm in inside diameter (ID), a layer (12-400 nm) of a type of non-volatile hexadecane was found with thickness inversely correlated with the tube ID. A sample of this anomalous hexadecane in microtubules 0.4 µm in ID was found to be formable by an ion beam. Compared with the nuclear magnetic resonance H-spectroscopy of conventional hexadecane, the characteristic peaks of this abnormal hexadecane were shifted to the high field with a broader characteristic peak, nuclear magnetic resonance hydrogen spectroscopy spectral features typical of that of solids. The surface density of these abnormal hexadecanes was found to be positively correlated with the silanol groups found on the interior silica microtubular surface. This positive correlation indicates that the high-density aggregation of silanol is an essential factor for forming the abnormal hexadecane reported in this paper.

2.
Rev Sci Instrum ; 90(7): 074101, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370446

RESUMO

Because of its simple principle and high adaptability to severe operational conditions, the capillary-tube viscometer has been widely used for viscosity measurement. However, difficulties in accurately correcting the end effect induced measurement deviation will result in great uncertainty for measurement results. In order to solve this problem, in this work, we studied factors affecting the end effect by conducting the high pressure nitrogen viscosity measurement at low flow velocity with an improved capillary-tube viscometer. The experimental results indicated that the influence of the end effect became less significant with the decrease in flow velocity (v) and tube inner diameter (d) and varied inversely with the length of tube (L). We defined the ratio of measured viscosity to standard viscosity obtained from the NIST database as the viscosity deviation coefficient (Ce). From the Ce vs v, Ce vs d, and Ce vs L curves, we have observed that there existed a threshold velocity (vthreshold), a threshold diameter (dthreshold), and a threshold length (Lthreshold) at which Ce got closer to 1.0. It suggested that under certain experimental conditions, the influence of the end effect on gas viscosity measurement became negligible. Based on that, we established end effect free capillary-tube viscometry and compared the nitrogen viscosity results measured by this method with the data provided by the NIST database. The results presented a good match with error within 1.2%. These insights will contribute to improving the accuracy of a capillary-tube viscometer especially under high pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...