Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 55(10): 2238-2247, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779146

RESUMO

Histone acetylation involves the transfer of two-carbon units to the nucleus that are embedded in low-concentration metabolites. We found that lactate, a high-concentration metabolic byproduct, can be a major carbon source for histone acetylation through oxidation-dependent metabolism. Both in cells and in purified nuclei, 13C3-lactate carbons are incorporated into histone H4 (maximum incorporation: ~60%). In the purified nucleus, this process depends on nucleus-localized lactate dehydrogenase (LDHA), knockout (KO) of which abrogates incorporation. Heterologous expression of nucleus-localized LDHA reverses the KO effect. Lactate itself increases histone acetylation, whereas inhibition of LDHA reduces acetylation. In vitro and in vivo settings exhibit different lactate incorporation patterns, suggesting an influence on the microenvironment. Higher nuclear LDHA localization is observed in pancreatic cancer than in normal tissues, showing disease relevance. Overall, lactate and nuclear LDHA can be major structural and regulatory players in the metabolism-epigenetics axis controlled by the cell's own status or the environmental status.


Assuntos
Histonas , Ácido Láctico , Histonas/metabolismo , Ácido Láctico/metabolismo , Acetilação , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Epigênese Genética
2.
Metabolomics ; 19(6): 58, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289273

RESUMO

BACKGROUND AND AIMS: SKN-1, a C. elegans transcription factor analogous to the mammalian NF-E2-related factor (Nrf2), has been known to promote oxidative stress resistance aiding nematodes' longevity. Although SKN-1's functions suggest its implication in lifespan modulation through cellular metabolism, the actual mechanism of how metabolic rearrangements contribute to SKN-1's lifespan modulation has yet to be well characterized. Therefore, we performed the metabolomic profiling of the short-lived skn-1-knockdown C. elegans. METHODS: We analyzed the metabolic profile of the skn-1-knockdown worms with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS/MS) and obtained distinctive metabolomic profiles compared to WT worms. We further extended our study with gene expression analysis to examine the expression level of genes encoding all metabolic enzymes. RESULTS: A significant increase in the phosphocholine and AMP/ATP ratio, potential biomarkers of aging, was observed, accompanied by a decrease in the transsulfuration metabolites, NADPH/NADP+ ratio, and total glutathione (GSHt), which are known to be involved in oxidative stress defense. skn-1-RNAi worms also exhibited an impairment in the phase II detoxification system, confirmed by the lower conversion rate of paracetamol to paracetamol-glutathione. By further examining the transcriptomic profile, we found a decrease in the expression of cbl-1, gpx, T25B9.9, ugt, and gst, which are involved in GSHt and NADPH synthesis as well as in the phase II detoxification system. CONCLUSION: Our multi-omics results consistently revealed that the cytoprotective mechanisms, including cellular redox reactions and xenobiotic detoxification system, contribute to the roles of SKN-1/Nrf2 in the lifespan of worms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Acetaminofen/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografia Líquida , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glutationa/metabolismo , Longevidade/genética , Mamíferos/metabolismo , Metabolômica , NADP/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espectrometria de Massas em Tandem
3.
J Exp Clin Cancer Res ; 42(1): 42, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750850

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC), with its hallmark phenotype of high cytosolic lipid content, is considered a metabolic cancer. Despite the implication of this lipid-rich phenotype in ccRCC tumorigenesis, the roles and regulators of de novo lipid synthesis (DNL) in ccRCC remain largely unexplained. METHODS: Our bioinformatic screening focused on ccRCC-lipid phenotypes identified glutathione peroxidase 8 (GPX8), as a clinically relevant upstream regulator of DNL. GPX8 genetic silencing was performed with CRISPR-Cas9 or shRNA in ccRCC cell lines to dissect its roles. Untargeted metabolomics, RNA-seq analyses, and other biochemical assays (e.g., lipid droplets staining, fatty acid uptake, cell proliferation, xenograft, etc.) were carried out to investigate the GPX8's involvement in lipid metabolism and tumorigenesis in ccRCC. The lipid metabolic function of GPX8 and its downstream were also measured by isotope-tracing-based DNL flux measurement. RESULTS: GPX8 knockout or downregulation substantially reduced lipid droplet levels (independent of lipid uptake), fatty acid de novo synthesis, triglyceride esterification in vitro, and tumor growth in vivo. The downstream regulator was identified as nicotinamide N-methyltransferase (NNMT): its knockdown phenocopied, and its expression rescued, GPX8 silencing both in vitro and in vivo. Mechanically, GPX8 regulated NNMT via IL6-STAT3 signaling, and blocking this axis suppressed ccRCC survival by activating AMPK. Notably, neither the GPX8-NNMT axis nor the DNL flux was affected by the von Hippel Lindau (VHL) status, the conventional regulator of ccRCC high lipid content. CONCLUSIONS: Taken together, our findings unravel the roles of the VHL-independent GPX8-NNMT axis in ccRCC lipid metabolism as related to the phenotypes and growth of ccRCC, which may be targeted for therapeutic purposes.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Lipogênese , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Carcinoma/genética , Neoplasias Renais/patologia , Lipídeos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Peroxidases/genética , Peroxidases/metabolismo
4.
Acta Pharmacol Sin ; 44(3): 670-679, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36100765

RESUMO

Temozolomide (TMZ) has been used as standard-of-care for glioblastoma multiforme (GBM), but the resistance to TMZ develops quickly and frequently. Thus, more studies are needed to elucidate the resistance mechanisms. In the current study, we investigated the relationship among the three important phenotypes, namely TMZ-resistance, cell shape and lipid metabolism, in GBM cells. We first observed the distinct difference in cell shapes between TMZ-sensitive (U87) and resistant (U87R) GBM cells. We then conducted NMR-based lipid metabolomics, which revealed a significant increase in cholesterol and fatty acid synthesis as well as lower lipid unsaturation in U87R cells. Consistent with the lipid changes, U87R cells exhibited significantly lower membrane fluidity. The transcriptomic analysis demonstrated that lipid synthesis pathways through SREBP were upregulated in U87R cells, which was confirmed at the protein level. Fatostatin, an SREBP inhibitor, and other lipid pathway inhibitors (C75, TOFA) exhibited similar or more potent inhibition on U87R cells compared to sensitive U87 cells. The lower lipid unsaturation ratio, membrane fluidity and higher fatostatin sensitivity were all recapitulated in patient-derived TMZ-resistant primary cells. The observed ternary relationship among cell shape, lipid composition, and TMZ-resistance may be applicable to other drug-resistance cases. SREBP and fatostatin are suggested as a promising target-therapeutic agent pair for drug-resistant glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Forma Celular , Metabolismo dos Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Lipídeos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Antineoplásicos Alquilantes/farmacologia
5.
Cancer Med ; 12(4): 4679-4689, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35941814

RESUMO

PURPOSE: Primary central nervous system lymphoma (PCNSL) is an uncommon extranodal non-Hodgkin's lymphoma. Here, the feasibility of nuclear magnetic resonance (NMR) metabolomics for the diagnosis and prognosis prediction of PCNSL, as well as its correlation with magnetic resonance imaging (MRI) characteristics, was assessed. PATIENTS AND METHODS: Cerebrospinal fluid (CSF) samples from PCNSL and normal groups (n = 41 for each) were obtained along with MRI data including pre- and postcontrast as well as T1-, T2-, and diffusion-weighted imaging for the treatment-naïve PCNSL patients (n = 24). The CSF samples were analyzed using nuclear magnetic resonance (NMR). RESULTS: The CSF NMR metabolomic exhibited clear differences with a diagnostic sensitivity of 100% and a specificity of 97.6%. The citrate level of the leptomeningeal enhancement (LE) (+) group was significantly lower than that of the LE (-) group (p = 0.018). In addition, the MRI apparent diffusion coefficient (ADC) value of the tumor was positively correlated with the glucose level (p = 0.025). However, none of the marker metabolites were significant prognosis predictors in univariate analysis. CONCLUSIONS: In conclusion, the NMR metabolomics could be helpful to diagnose PCNSL, but not for the prognosis, and MRI features (LE or ADC) can reflect the metabolic profiles of PCNSL.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma não Hodgkin , Linfoma , Humanos , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Linfoma/diagnóstico por imagem , Linfoma/patologia , Imageamento por Ressonância Magnética/métodos , Linfoma não Hodgkin/diagnóstico por imagem , Linfoma não Hodgkin/patologia , Espectroscopia de Ressonância Magnética
7.
J Am Chem Soc ; 144(19): 8529-8535, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35535499

RESUMO

Gut microbiome can affect drug metabolism considerably, leading to modified drug response. However, quantitative estimation of host vs. microbial contributions in a living host-gut microbiome system has been challenging. Using the interspecies system of Caenorhabditis elegans and gut bacteria, we developed a real-time approach for monitoring their metabolic interaction in vivo during anticancer drug 5-fluorouracil (5-FU) metabolism. The fluorine NMR-based approach yielded the quantitative contributions to the host 5-FU metabolism made by human gut-microbial species of variable genetic backgrounds. It also experimentally confirmed a bacterial gene-metabolism relationship. Differential 5-FU catabolism among bacterial substrains and the contributions to the host metabolism, unobservable by conventional 16S rRNA metagenomic sequencing, were also found. The metabolic contributions could be correlated with phenotypic developmental toxicity of 5-FU to the host fed with different substrains. Our convenient platform should help to reveal heterogeneity in host-gut microbiome interactions for many drugs in a living symbiotic system.


Assuntos
Antineoplásicos , Microbioma Gastrointestinal , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bactérias/metabolismo , Fluoruracila/farmacologia , Humanos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
8.
Chem Sci ; 12(13): 4958-4962, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168765

RESUMO

Metabolomic isotopic tracing can provide flux information useful for understanding drug mechanisms. For that, NMR has the unique advantage of giving positional isotope enrichment information, but the current 13C 1D NMR approach suffers from low sensitivity and high overlaps. We developed a new 2D heteronuclear NMR experiment incorporating J-scaling and distortion-free elements that allows for quantitative analysis of multiplets with high sensitivity and resolution. When applied to an old chemotherapeutic drug, the approach provided a quantitative estimation of TCA-cycle turns, confirming the conventional mechanism of its mitochondrial metabolic enhancement. Additionally, the approach identified a new mechanism of the higher contribution of the pentose phosphate pathway to serine synthesis in the cytosolic compartment, possibly explaining the broad pharmacological activities of the drug. Our approach may prove beneficial in helping to find new usages or metabolic mechanisms of other drugs.

9.
Anal Chem ; 92(11): 7382-7387, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32392040

RESUMO

AMP-activated protein kinase (AMPK in human and AAK in C. elegans) is a master regulator of metabolism. It has many isotypes, but its isotype-dependent functions are largely unknown. By developing real-time in-organism NMR metabolomics for C. elegans, we were able to study different roles of the isotypic catalytic subunits of AAK/AMPK, AAK-1, and AAK-2 in live worms at the whole organism level. The aak-1 knockout animals exhibited enhanced glucose production under starvation, strikingly opposite to aak-2 knockout animals. Unusually high compensatory expression of the reciprocal isotypes in each KO strain and the results for the double KO animals suggested an unconventional phenotype-genotype relationship and the dominance of aak-2 in glucose production. The gene expression patterns showed that the differential phenotypes of aak-1 KO strain are due to reduced TCA and glycolysis and enhanced gluconeogenesis compared to the aak-2 KO strain. Subsequent 13C-isotope incorporation experiment showed that the glucose production in aak-1 KO occurs through the activation of fatty acid oxidation and glyoxylate shunt. Revealing differential roles of the isotypes of AAK/AMPK, our convenient approach is readily applicable to many C. elegans models for human metabolic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Animais , Caenorhabditis elegans/enzimologia , Domínio Catalítico , Humanos , Fatores de Tempo
10.
Cell Metab ; 29(2): 399-416.e10, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30449682

RESUMO

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/fisiologia , Pirimidinas/metabolismo , Animais , Linhagem Celular Tumoral , Respiração Celular , Di-Hidro-Orotato Desidrogenase , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Ubiquinona/metabolismo
11.
J Exp Clin Cancer Res ; 37(1): 295, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497501

RESUMO

BACKGROUND: Ligand-dependent activation of the G-protein coupled receptor 119 (GPR119) lowers blood glucose via glucose-dependent insulin secretion and intestinal glucagon-like peptide-1 production. However, the function of GPR119 in cancer cells has not been studied. METHODS: GPR119 expression was assessed by real-time qPCR and immunohistochemistry in human breast cancer cell lines and breast cancer tissues. Cell proliferation and cell cycle analyses were performed by Incucyte® live cell analysis system and flow cutometry, respectively. Autophagy activity was estimeated by western blottings and LC3-GFP transfection. RESULTS: mRNA or protein expression of GPR119 was detected in 9 cancer cell lines and 19 tissue samples. Cotreatment with GPR119 agonist (MBX-2982 or GSK1292263) significantly potentiated gefitinib-induced cell growth inhibition in gefitinib-insensitive MCF-7 and MDA-MB-231 breast cancer cells. We observed that caspase-3/7 activity was enhanced with the downregulation of Bcl-2 in MCF-7 cells exposed to MBX-2982. Gefitinib-induced autophagy is related with cancer cell survival and chemoresistance. GPR119 agonists inhibit gefitinib-induced autophagosome formation in MCF-7 and MDA-MB-231 cells. MBX-2982 also caused a metabolic shift to enhanced glycolysis accompanied by reduced mitochondrial oxidative phosphorylation. MBX-2982 increased intracellular (~ 2.5 mM) and extracellular lactate (~ 20 mM) content. Gefitinib-mediated autophagy was suppressed by 20 mM lactate in MCF-7 cells. CONCLUSIONS: GPR119 agonists reduced mitochondrial OXPHOS and stimulated glycolysis in breast cancer cells, with consequent overproduction of lactate that inhibited autophagosome formation. Because autophagy is crucial for the survival of cancer cells exposed to TKIs, GPR119 agonists potentiated the anticancer effects of TKIs.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Gefitinibe/farmacologia , Ácido Láctico/metabolismo , Mesilatos/farmacologia , Oxidiazóis/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Tetrazóis/farmacologia , Tiazóis/farmacologia , Animais , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores Acoplados a Proteínas G/metabolismo , Transfecção
12.
Mol Ther Nucleic Acids ; 12: 817-828, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30153566

RESUMO

Lung cancer is the leading cause of cancer-associated deaths worldwide. In particular, non-small-cell lung cancer (NSCLC) cells harboring epidermal growth factor receptor (EGFR) mutations are associated with resistance development of EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment. Recent findings suggest that bone morphogenetic proteins (BMPs) and microRNAs (miRNAs) might act as oncogenes or tumor suppressors in the tumor microenvironment. In this study, for the first time, we identified the potential roles of BMPs and miRNAs involved in EGFR-TKI resistance by analyzing datasets from a pair of parental cells and NSCLC cells with acquired EGFR-TKI resistance. BMP4 was observed to be significantly overexpressed in the EGFR-TKI-resistant cells, and its mechanism of action was strongly associated with the induction of cancer cell energy metabolism through the modulation of Acyl-CoA synthetase long-chain family member 4. In addition, miR-139-5p was observed to be significantly downregulated in the resistant NSCLC cells. The combination of miR-139-5p and yuanhuadine, a naturally derived antitumor agent, synergistically suppressed BMP4 expression in the resistant cells. We further confirmed that LDN-193189, a small molecule BMP receptor 1 inhibitor, effectively inhibited tumor growth in a xenograft nude mouse model implanted with the EFGR-TKI-resistant cells. These findings suggest a novel role of BMP4-mediated tumorigenesis in the progression of acquired drug resistance in EGFR-mutant NSCLC cells.

13.
Anal Chem ; 89(2): 1078-1085, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28029042

RESUMO

Isotopomer analysis using either 13C NMR or LC/GC-MS has been an invaluable tool for studying metabolic activities in a variety of systems. Traditional challenges are, however, that 13C-detected NMR is insensitive despite its high resolution, and that MS-based techniques cannot easily differentiate positional isotopomers. In addition, current 13C NMR or LC/GC-MS has limitations in detecting metabolites in living cells. Here, we describe a non-uniform sampling-based 2D heteronuclear single quantum coherence (NUS HSQC) approach to measure metabolic isotopomers in both cell lysates and living cells. The method provides a high resolution that can resolve multiplet structures in the 13C dimension while retaining the sensitivity of the 1H-indirect detection. The approach was tested in L1210 mouse leukemia cells labeled with 13C acetate by measuring NUS HSQC with 25% sampling density. The results gave a variety of metabolic information such as (1) higher usage of acetate in acetylation pathway than aspartate synthesis, (2) TCA cycle efficiency changes upon the inhibition of mitochondrial oxidative phosphorylation by pharmacological agents, and (3) position-dependent isotopomer patterns in fatty acids in living cells. In addition, we were able to detect fatty acids along with other hydrophilic molecules in one sample of live cells without extraction. Overall, the high sensitivity and resolution along with the application to live cells should make the NUS HSQC approach attractive in studying carbon flux information in metabolic studies.


Assuntos
Isótopos de Carbono/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Acetatos/análise , Acetatos/metabolismo , Animais , Isótopos de Carbono/análise , Linhagem Celular Tumoral , Sobrevivência Celular , Leucemia/metabolismo , Camundongos , Manejo de Espécimes/métodos
14.
Angew Chem Int Ed Engl ; 54(18): 5374-7, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25752301

RESUMO

Altered metabolism is a critical part of cancer cell properties, but real-time monitoring of metabolomic profiles has been hampered by the lack of a facile method. Here, we propose real-time metabolomic monitoring of live cancer cells using (13) C6 -glucose and heteronuclear two-dimensional (2D) NMR. The method allowed for metabolomic differentiation between cancer and normal cells on the basis of time-dependent changes in metabolite concentrations. Cancer cells were found to have large in- and out-flux of pyruvate as well as increased net production of alanine and acetate. The method also enabled evaluation of the metabolic effects of galloflavin whose anticancer effects have been attributed to its specific inhibition of lactate dehydrogenase. Our approach revealed previously unknown functional targets of galloflavin, which were further confirmed at the protein levels. Our method is readily applicable to the study of metabolic alterations in other cellular disease model systems.


Assuntos
Antineoplásicos/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Isocumarinas/farmacologia , Metaboloma/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular/métodos , Acetatos/metabolismo , Alanina/metabolismo , Células Hep G2 , Hepatócitos/enzimologia , Humanos , L-Lactato Desidrogenase/antagonistas & inibidores , Ácido Pirúvico/metabolismo
15.
Arch Pharm Res ; 38(3): 372-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25630795

RESUMO

As metabolomics investigates metabolic pathways with the focus on metabolites, it is a suitable approach to address the complex metabolic alteration in cancer. In addition, metabolic profiles are affected by environmental and post-natal changes, and therefore, directly measuring many metabolites may provide epigenetically relevant information in cancer. Despite much development in our understanding of cancer metabolism, focus is often directed to signaling or metabolic proteins that modulate the metabolite levels. In this review, we discuss the "metabolite-oriented view" on cancer metabolism. We cover how metabolomics research contributed to our current insights into the basic mechanism of metabolic alterations leading to cancer. Then, we discuss specific metabolites and related enzymatic pathways directly related with tumorigenesis. We particularly pay attention to how metabolites regulate signaling proteins and metabolic enzymes ultimately leading to cancer phenotypes. Finally, we address future prospects and challenges of metabolomics in cancer research.


Assuntos
Epigênese Genética , Metabolômica , Neoplasias/metabolismo , Enzimas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Proteínas/metabolismo , Transdução de Sinais/fisiologia
16.
Int J Cancer ; 136(1): 162-71, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24798643

RESUMO

Leptomeningeal carcinomatosis (LC) is a metastatic cancer invading the central nervous system (CNS). We previously reported a metabolomic diagnostic approach as tested on an animal model and compared with current modalities. Here, we provide a proof of concept by applying it to human LC originating from lung cancer, the most common cause of CNS metastasis. Cerebrospinal fluid from LC (n = 26) and normal groups (n = 41) were obtained, and the diagnosis was established with clinical signs, cytology, MRI and biochemical tests. The cytology on the CSF, the current gold standard, exhibited 69% sensitivity (~100% specificity) from the first round of CSF tapping. In comparison, the nuclear magnetic resonance spectra on the CSF showed a clear difference in the metabolic profile between the LC and normal groups. Multivariate analysis and cross-validation yielded the diagnostic sensitivity of 92%, the specificity of 96% and the area under the curve (AUC) of 0.991. Further spectral and statistical analysis identified myo-inositol (p < 5 × 10(-14)), creatine (p < 7 × 10(-8)), lactate (p < 9 × 10(-4)), alanine (p < 7.9 × 10(-3)) and citrate (p < 3 × 10(-4)) as the most contributory metabolites, whose combination exhibited an receiver-operating characteristic diagnostic AUC of 0.996. In addition, the metabolic profile could be correlated with the grading of radiological leptomeningeal enhancement (R(2) = 0.3881 and p = 6.66 × 10(-4)), suggesting its potential utility in grading LC. Overall, we propose that the metabolomic approach might augment current diagnostic modalities for LC, the accurate diagnosis of which remains a challenge.


Assuntos
Adenocarcinoma/diagnóstico , Neoplasias Pulmonares/diagnóstico , Carcinomatose Meníngea/diagnóstico , Metaboloma , Adenocarcinoma/líquido cefalorraquidiano , Adenocarcinoma/secundário , Alanina/líquido cefalorraquidiano , Área Sob a Curva , Biomarcadores Tumorais/líquido cefalorraquidiano , Estudos de Casos e Controles , Ácido Cítrico/líquido cefalorraquidiano , Creatina/líquido cefalorraquidiano , Humanos , Inositol/líquido cefalorraquidiano , Ácido Láctico/líquido cefalorraquidiano , Neoplasias Pulmonares/líquido cefalorraquidiano , Neoplasias Pulmonares/patologia , Espectroscopia de Ressonância Magnética , Carcinomatose Meníngea/líquido cefalorraquidiano , Carcinomatose Meníngea/secundário , Análise Multivariada , Curva ROC
17.
PLoS One ; 9(11): e109609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25384027

RESUMO

Metabolic surgery has been shown to provide better glycemic control for type 2 diabetes than conventional therapies. Still, the outcomes of the surgery are variable, and prognostic markers reflecting the metabolic changes by the surgery are yet to be established. NMR-based plasma metabolomics followed by multivariate regression was used to test the correlation between the metabolomic profile at 7-days after surgery and glycated hemoglobin (HbA1c) levels at 3-months (and up to 12 months with less patients), and to identify the relevant markers. Metabolomic profiles at 7-days could differentiate the patients according to the HbA1c improvement status at 3-months. The HbA1c values were predicted based on the metabolomics profile with partial least square regression, and found to be correlated with the observed values. Metabolite analysis suggested that 3-Hydroxybutyrate (3-HB) and glucose contributes to this prediction, and the [3-HB]/[glucose] exhibited a modest to good correlation with the HbA1c level at 3-months. The prediction of 3-month HbA1c using 7-day metabolomic profile and the suggested new criterion [3-HB]/[glucose] could augment current prognostic modalities and help clinicians decide if drug therapy is necessary.


Assuntos
Cirurgia Bariátrica/estatística & dados numéricos , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/cirurgia , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Humanos , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Modelos Biológicos , Prognóstico , República da Coreia , Fatores de Tempo
18.
J Proteome Res ; 12(4): 1619-27, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23527786

RESUMO

Alterations in metabolic pathways are gaining attention as important environmental factors affecting life span, but the determination of specific metabolic pathways and enzymes involved in life span remains largely unexplored. By applying an NMR-based metabolomics approach to a calorie-restricted yeast (Saccharomyces cerevisiae) model, we found that alanine level is inversely correlated with yeast chronological life span. The involvement of the alanine-metabolizing pathway in the life span was tested using a deletion mutant of ALT1, the gene for a key alanine-metabolizing enzyme. The mutant exhibited increased endogenous alanine level and much shorter life span, demonstrating the importance of ALT1 and alanine metabolic pathways in the life span. ALT1's effect on life span was independent of the TOR pathway, as revealed by a tor1 deletion mutant. Further mechanistic studies showed that alt1 deletion suppresses cytochrome c oxidase subunit 2 expression, ultimately generating reactive oxygen species. Overall, ALT1 seems critical in determining yeast life span, and our approach should be useful for the mechanistic studies of life span determinations.


Assuntos
Alanina Transaminase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Alanina Transaminase/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Deleção de Genes , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
Mol Cell Proteomics ; 12(3): 575-86, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23230277

RESUMO

Dietary restriction (DR) has many beneficial effects, but the detailed metabolic mechanism remains largely unresolved. As diet is essentially related to metabolism, we investigated the metabolite profiles of urines from control and DR animals using NMR and LC/MS metabolomic approaches. Multivariate analysis presented distinctive metabolic profiles and marker signals from glucuronide and glycine conjugation pathways in the DR group. Broad profiling of the urine phase II metabolites with neutral loss scanning showed that levels of glucuronide and glycine conjugation metabolites were generally higher in the DR group. The up-regulation of phase II detoxification in the DR group was confirmed by mRNA and protein expression levels of uridinediphospho-glucuronosyltransferase and glycine-N-acyltransferase in actual liver tissues. Histopathology and serum biochemistry showed that DR was correlated with the beneficial effects of low levels of serum alanine transaminase and glycogen granules in liver. In addition, the Nuclear factor (erythroid-derived 2)-like 2 signaling pathway was shown to be up-regulated, providing a mechanistic clue regarding the enhanced phase II detoxification in liver tissue. Taken together, our metabolomic and biochemical studies provide a possible metabolic perspective for understanding the complex mechanism underlying the beneficial effects of DR.


Assuntos
Restrição Calórica , Desintoxicação Metabólica Fase II/fisiologia , Metaboloma/fisiologia , Metabolômica/métodos , Aciltransferases/genética , Aciltransferases/metabolismo , Alanina Transaminase/sangue , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Glicina/metabolismo , Glicogênio/metabolismo , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Desintoxicação Metabólica Fase II/genética , Metaboloma/genética , Antígenos de Histocompatibilidade Menor , Análise Multivariada , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
20.
ACS Chem Biol ; 7(12): 2012-8, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23043523

RESUMO

The roles of sir-2.1 in C. elegans lifespan extension have been subjects of recent public and academic debates. We applied an efficient workflow for in vivo(13)C-labeling of C. elegans and (13)C-heteronuclear NMR metabolomics to characterizing the metabolic phenotypes of the sir-2.1 mutant. Our method delivered sensitivity 2 orders of magnitude higher than that of the unlabeled approach, enabling 2D and 3D NMR experiments. Multivariate analysis of the NMR data showed distinct metabolic profiles of the mutant, represented by increases in glycolysis, nitrogen catabolism, and initial lipolysis. The metabolomic analysis defined the sir-2.1 mutant metabotype as the decoupling between enhanced catabolic pathways and ATP generation. We also suggest the relationship between the metabotypes, especially the branched chain amino acids, and the roles of sir-2.1 in the worm lifespan. Our results should contribute to solidifying the roles of sir-2.1, and the described workflow can be applied to studying many other proteins in metabolic perspectives.


Assuntos
Caenorhabditis elegans/metabolismo , Metabolômica , Mutação , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Caenorhabditis elegans/genética , Isótopos de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...