Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 391: 117478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417185

RESUMO

BACKGROUND AND AIMS: Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid infiltration and plaque formation in blood vessel walls. Ganoderic acids (GA), a class of major bioactive compounds isolated from the Chinese traditional medicine Ganoderma lucidum, have multiple pharmacological activities. This study aimed to determine the anti-atherosclerotic effect of GA and reveal the pharmacological mechanism. METHODS: ApoE-/- mice were fed a high-cholesterol diet and treated with GA for 16 weeks to induce AS and identify the effect of GA. Network pharmacological analysis was performed to predict the anti-atherosclerotic mechanisms. An invitro cell model was used to explore the effect of GA on macrophage polarization and the possible mechanism involved in bone marrow dereived macrophages (BMDMs) and RAW264.7 cells stimulated with lipopolysaccharide or oxidized low-density lipoprotein. RESULTS: It was found that GA at 5 and 25 mg/kg/d significantly inhibited the development of AS and increased plaque stability, as evidenced by decreased plaque in the aorta, reduced necrotic core size and increased collagen/lipid ratio in lesions. GA reduced the proportion of M1 macrophages in plaques, but had no effect on M2 macrophages. In vitro experiments showed that GA (1, 5, 25 µg/mL) significantly decreased the proportion of CD86+ macrophages and the mRNA levels of IL-6, IL-1ß, and MCP-1 in macrophages. Experimental results showed that GA inhibited M1 macrophage polarization by regulating TLR4/MyD88/NF-κB signaling pathway. CONCLUSIONS: This study demonstrated that GA play an important role in plaque stability and macrophage polarization. GA exert the anti-atherosclerotic effect partly by regulating TLR4/MyD88/NF-κB signaling pathways to inhibit M1 polarization of macrophages. Our study provides theoretical basis and experimental data for the pharmacological activity and mechanisms of GA against AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Receptor 4 Toll-Like/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/genética , Placa Aterosclerótica/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Lipídeos
2.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37237889

RESUMO

Hyperuricemia (HUA)-induced oxidative stress is a crucial contributor to hyperuricemic nephropathy (HN), but the molecular mechanisms underlying the disturbed redox homeostasis in kidneys remain elusive. Using RNA sequencing, together with biochemical analyses, we found that nuclear factor erythroid 2-related factor 2 (NRF2) expression and nuclear localization levels were increased in early HN progression and then gradually declined below the baseline level. We identified the impaired activity of the NRF2-activated antioxidant pathway as a driver of oxidative damage in HN progression. Through nrf2 deletion, we further confirmed aggravated kidney damage in nrf2 knockout HN mice compared with HN mice. In contrast, the pharmacological agonist of NRF2 improved kidney function and alleviated renal fibrosis in mice. Mechanistically, the activation of NRF2 signaling reduced oxidative stress by restoring mitochondrial homeostasis and reducing NADPH oxidase 4 (NOX4) expression in vivo or in vitro. Moreover, the activation of NRF2 promoted the expression levels of heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO1) and enhanced the antioxidant capacity of cells. Furthermore, the activation of NRF2 ameliorated renal fibrosis in HN mice through the downregulation of the transforming growth factor-beta 1 (TGF-ß1) signaling pathway and ultimately delayed the progression of HN. Collectively, these results suggested NRF2 as a key regulator in improving mitochondrial homeostasis and fibrosis in renal tubular cells by reducing oxidative stress, upregulating the antioxidant signaling pathway, and downregulating the TGF-ß1 signaling pathway. The activation of NRF2 represents a promising strategy to restore redox homeostasis and combat HN.

3.
Acta Pharmacol Sin ; 44(2): 406-420, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35906293

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Cyst development in ADPKD involves abnormal epithelial cell proliferation, which is affected by the primary cilia-mediated signal transduction in the epithelial cells. Thus, primary cilium has been considered as a therapeutic target for ADPKD. Since ADPKD exhibits many pathological features similar to solid tumors, we investigated whether targeting primary cilia using anti-tumor agents could alleviate the development of ADPKD. Twenty-four natural compounds with anti-tumor activity were screened in MDCK cyst model, and 1-Indanone displayed notable inhibition on renal cyst growth without cytotoxicity. This compound also inhibited cyst development in embryonic kidney cyst model. In neonatal kidney-specific Pkd1 knockout mice, 1-Indanone remarkably slowed down kidney enlargement and cyst expansion. Furthermore, we demonstrated that 1-Indanone inhibited the abnormal elongation of cystic epithelial cilia by promoting tubulin polymerization and significantly down-regulating expression of anterograde transport motor protein KIF3A and IFT88. Moreover, we found that 1-Indanone significantly down-regulated ciliary coordinated Wnt/ß-catenin, Hedgehog signaling pathways. These results demonstrate that 1-Indanone inhibits cystic cell proliferation by reducing abnormally prolonged cilia length in cystic epithelial cells, suggesting that 1-Indanone may hold therapeutic potential to retard cyst development in ADPKD.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Cílios , Tubulina (Proteína)/metabolismo , Proteínas Hedgehog/metabolismo , Rim/patologia , Camundongos Knockout , Cistos/metabolismo , Cistos/patologia , Canais de Cátion TRPP/metabolismo , Células Epiteliais/metabolismo
4.
Sci China Life Sci ; 65(12): 2354-2454, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36066811

RESUMO

Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Envelhecimento/genética , Envelhecimento/metabolismo , Neoplasias/genética
5.
Front Pharmacol ; 13: 888247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662728

RESUMO

Aging is a major risk factor for chronic diseases and disability in humans. Nowadays, no effective anti-aging treatment is available clinically. In this study, oridonin was selected based on the drug screening strategy similar to Connectivity MAP (CMAP) but upon transcriptomes of 102 traditional Chinese medicines treated cell lines. Oridonin is a diterpenoid isolated from Rabdosia rubescens. As reported, Oridonin exhibits a variety of pharmacological activities, including antitumor, antibacterial and anti-inflammatory activities. Here, we found that oridonin inhibited cellular senescence in human diploid fibroblasts (2BS and WI-38), manifested by decreased senescence-associated ß-galactosidase (SA-ß-gal) staining. Compared with the elderly control group, the positive cell rate in the oridonin intervention group was reduced to 48.5%. Notably, oridonin prolonged the lifespan of yeast by 48.9%, and extended the average life span of naturally aged mice by 21.6%. Our mice behavior experiments exhibited that oridonin significantly improved the health status of naturally aged mice. In addition, oridonin also delayed doxorubicin-induced cellular senescence and mouse senescence. Compared with the model group, the percentage of SA-ß-gal positive cells in the oridonin treatment group was reduced to 59.8%. It extended the average lifespan of mice by 53.8% and improved healthspan. Mechanistically, we showed that oridonin delayed aging through the AKT signaling pathway and reversed the genetic changes caused by doxorubicin-induced cell senescence. Therefore, oridonin is a potential candidate for the development of anti-aging drugs.

6.
Food Funct ; 12(24): 12325-12337, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34821902

RESUMO

5-Fluorouracil (5-FU) is a chemotherapeutic drug with a good anti-cancer effect on various types of cancers, such as colorectal cancer and breast cancer. However, previous studies have found that 5-FU could induce cognitive deficit in clinics. As ganoderic acid, isolated from Ganoderma lucidum, has a protective effect on neurons, this study investigated the effects of ganoderic acid (GA) against 5-FU-induced cognitive dysfunction with a series of behavioral tests and related indicators. Experimental results showed that GA significantly prevented the reduction of spatial and non-spatial memory in 5-FU-treated mice. In addition, GA not only ameliorated the damage to hippocampal neurons and mitochondrial structure, but also significantly improved abnormal protein expression of mitochondrial biogenesis related marker PGC-1α, and mitochondrial dynamics related markers MFN2, DRP1 and FIS1 in the hippocampi of 5-FU-treated mice. Moreover, GA could up-regulate the expression of neuronal survival and growth-related proteins, such as BDNF, p-ERK, p-CREB, p-Akt, p-GSK3ß, Nrf2, p-mTOR, and p-S6, in the hippocampi of 5-FU-treated mice. These results suggest that GA could prevent cognitive dysfunction in mice treated with 5-FU via preventing mitochondrial impairment and enhancing neuronal survival and growth, which provide evidence for GA as a promising adjunctive therapy for chemotherapy related cognitive impairment in clinics.


Assuntos
Disfunção Cognitiva/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Reishi , Triterpenos/farmacologia , Animais , Antineoplásicos/efeitos adversos , Modelos Animais de Doenças , Fluoruracila/efeitos adversos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fitoterapia , Distribuição Aleatória , Triterpenos/uso terapêutico
7.
Nat Biotechnol ; 39(11): 1444-1452, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34140681

RESUMO

Drug discovery focused on target proteins has been a successful strategy, but many diseases and biological processes lack obvious targets to enable such approaches. Here, to overcome this challenge, we describe a deep learning-based efficacy prediction system (DLEPS) that identifies drug candidates using a change in the gene expression profile in the diseased state as input. DLEPS was trained using chemically induced changes in transcriptional profiles from the L1000 project. We found that the changes in transcriptional profiles for previously unexamined molecules were predicted with a Pearson correlation coefficient of 0.74. We examined three disorders and experimentally tested the top drug candidates in mouse disease models. Validation showed that perillen, chikusetsusaponin IV and trametinib confer disease-relevant impacts against obesity, hyperuricemia and nonalcoholic steatohepatitis, respectively. DLEPS can generate insights into pathogenic mechanisms, and we demonstrate that the MEK-ERK signaling pathway is a target for developing agents against nonalcoholic steatohepatitis. Our findings suggest that DLEPS is an effective tool for drug repurposing and discovery.


Assuntos
Aprendizado Profundo , Animais , Descoberta de Drogas , Reposicionamento de Medicamentos , Camundongos , Proteínas/genética , Transcriptoma/genética
8.
Aging Cell ; 19(4): e13129, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157780

RESUMO

Histone acetyltransferases (HATs) are important enzymes that transfer acetyl groups onto histones and thereby regulate both gene expression and chromosomal structures. Previous work has shown that the activation of sirtuins, which are histone deacetylases, can extend lifespan. This suggests that inhibiting HATs may have a similar beneficial effect. In the present study, we utilized a range of HAT inhibitors or heterozygous Gcn5 and Ngg1 mutants to demonstrate marked yeast life extension. In human cell lines, HAT inhibitors and selective RNAi-mediated Gcn5 or Ngg1 knockdown reduced the levels of aging markers and promoted proliferation in senescent cells. Furthermore, this observed lifespan extension was associated with the acetylation of histone H3 rather than that of H4. Specifically, it was dependent upon H3K9Ac and H3K18Ac modifications. We also found that the ability of caloric restriction to prolong lifespan is Gcn5-, Ngg1-, H3K9-, and H3K18-dependent. Transcriptome analysis revealed that these changes were similar to those associated with heat shock and were inversely correlated with the gene expression profiles of aged yeast and aged worms. Through a bioinformatic analysis, we also found that HAT inhibition activated subtelomeric genes in human cell lines. Together, our results suggest that inhibiting the HAT Gcn5 may be an effective means of increasing longevity.


Assuntos
Histona Acetiltransferases/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Longevidade , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
9.
Aging Cell ; 19(1): e13060, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31773901

RESUMO

Although aging and senescence have been extensively studied in the past few decades, however, there is lack of clinical treatment available for anti-aging. This study presents the effects of berberine (BBR) on the aging process resulting in a promising extension of lifespan in model organisms. BBR extended the replicative lifespan, improved the morphology, and boosted rejuvenation markers of replicative senescence in human fetal lung diploid fibroblasts (2BS and WI38). BBR also rescued senescent cells with late population doubling (PD). Furthermore, the senescence-associated ß-galactosidase (SA-ß-gal)-positive cell rates of late PD cells grown in the BBR-containing medium were ~72% lower than those of control cells, and its morphology resembled that of young cells. Mechanistically, BBR improved cell growth and proliferation by promoting entry of cell cycles from the G0 or G1 phase to S/G2 -M phase. Most importantly, BBR extended the lifespan of chemotherapy-treated mice and naturally aged mice by ~52% and ~16.49%, respectively. The residual lifespan of the naturally aged mice was extended by 80%, from 85.5 days to 154 days. The oral administration of BBR in mice resulted in significantly improved health span, fur density, and behavioral activity. Therefore, BBR may be an ideal candidate for the development of an anti-aging medicine.


Assuntos
Berberina/uso terapêutico , Ciclinas/metabolismo , Genes p16/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Animais , Berberina/farmacologia , Senescência Celular , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...