Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(3): 3941-3952, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36623259

RESUMO

Realizing ideal deuterium separation from isotopic mixtures remains a daunting challenge because of their almost identical sizes, shapes, and physicochemical properties. Using the quantum sieving effect in porous materials with suitable pore size and open metal sites (OMSs) enables efficient hydrogen isotope separation. Herein, synthetic HKUST-1-derived microporous mixed-valence Cu(I)Cu(II)-BTC (BTC = benzene-1,3,5-tricarboxylate), featuring a unique network of distinct Cu(I) and Cu(II) coordination sites, can remarkably boost the D2/H2 isotope separation, which has a high selectivity (SD2/H2) of 37.9 at 30 K, in comparison with HKUST-1 and other porous materials. Density functional theory (DFT) calculations indicate that the introduction of Cu(I) macrocycles in the framework decreases the pore size and further leads to relatively enhanced interaction of H2/D2 molecules on Cu(II) sites. The significantly enhanced selectivity of Cu(I)Cu(II)-BTC at 30 K can be mainly attributed to the synergistic effect of kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS). The results reveal that Cu(I) OMSs exhibit counterintuitive behaviors and play a crucial role in tuning quantum sieving without a complex structural design, which provides a deeper insight into quantum sieving mechanisms and a new strategy for the intelligent design of highly efficient isotope systems.

2.
Materials (Basel) ; 13(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935826

RESUMO

It is important to get fast and quantitative compositional depth profiles for the boundary layer of the corroded specimen in order to understand the corrosion process and mechanism due to liquid lithium induced corrosion problems to structural material of fusion reactors. In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is introduced to investigate the compatibility of CLF-1(China low-activation Ferritic steel) exposed in liquid lithium at 500 °C for 500 h. The results show that CF-LIBS constitutes an effective technique to observe the corrosion layer of specimens which are non-uniform and the elements of matrix show gradient distribution from the boundary to the inner layer. The concentration was 82-95 wt.% Fe, 5-12 wt.% Cr, 0.45-0.85 wt.% Mn, 1.6-1.1 wt.% W, 0.11-0.16 wt.% V, and <0.2 wt.% Li along the longitudinal corrosion depth for the corrode CLF-1. The results reveal the quantitative elemental variation trend of CLF-1 in the lithium corrosion process and indicate that the CF-LIBS approach can be applied to the analysis of composition in multi-element materials.

3.
Nanoscale Res Lett ; 8(1): 43, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23336520

RESUMO

In this study, we report on the evolution of the microstructure and photoluminescence properties of Pr3+-doped hafnium silicate thin films as a function of annealing temperature (TA). The composition and microstructure of the films were characterized by means of Rutherford backscattering spectrometry, spectroscopic ellipsometry, Fourier transform infrared absorption, and X-ray diffraction, while the emission properties have been studied by means of photoluminescence (PL) and PL excitation (PLE) spectroscopies. It was observed that a post-annealing treatment favors the phase separation in hafnium silicate matrix being more evident at 950°C. The HfO2 phase demonstrates a pronounced crystallization in tetragonal phase upon 950°C annealing. Pr3+ emission appeared at TA = 950°C, and the highest efficiency of Pr3+ ion emission was detected upon a thermal treatment at 1,000°C. Analysis of the PLE spectra reveals an efficient energy transfer from matrix defects towards Pr3+ ions. It is considered that oxygen vacancies act as effective Pr3+ sensitizer. Finally, a PL study of undoped HfO2 and HfSiOx matrices is performed to evidence the energy transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA