Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1374278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756651

RESUMO

Objective: In physical health examinations, breast sonography is a commonly used imaging method, but it can lead to repeated exams and unnecessary biopsy due to discrepancies among radiologists and health centers. This study explores the role of off-the-shelf artificial intelligence (AI) software in assisting radiologists to classify incidentally found breast masses in two health centers. Methods: Female patients undergoing breast ultrasound examinations with incidentally discovered breast masses were categorized according to the 5th edition of the Breast Imaging Reporting and Data System (BI-RADS), with categories 3 to 5 included in this study. The examinations were conducted at two municipal health centers from May 2021 to May 2023.The final pathological results from surgical resection or biopsy served as the gold standard for comparison. Ultrasonographic images were obtained in longitudinal and transverse sections, and two junior radiologists and one senior radiologist independently assessed the images without knowing the pathological findings. The BI-RADS classification was adjusted following AI assistance, and diagnostic performance was compared using receiver operating characteristic curves. Results: A total of 196 patients with 202 breast masses were included in the study, with pathological results confirming 107 benign and 95 malignant masses. The receiver operating characteristic curve showed that experienced breast radiologists had higher diagnostic performance in BI-RADS classification than junior radiologists, similar to AI classification (AUC = 0.936, 0.806, 0.896, and 0.950, p < 0.05). The AI software improved the accuracy, sensitivity, and negative predictive value of the adjusted BI-RADS classification for the junior radiologists' group (p< 0.05), while no difference was observed in the senior radiologist group. Furthermore, AI increased the negative predictive value for BI-RADS 4a masses and the positive predictive value for 4b masses among radiologists (p < 0.05). AI enhances the sensitivity of invasive breast cancer detection more effectively than ductal carcinoma in situ and rare subtypes of breast cancer. Conclusions: The AI software enhances diagnostic efficiency for breast masses, reducing the performance gap between junior and senior radiologists, particularly for BI-RADS 4a and 4b masses. This improvement reduces unnecessary repeat examinations and biopsies, optimizing medical resource utilization and enhancing overall diagnostic effectiveness.

2.
World J Urol ; 42(1): 184, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512539

RESUMO

PURPOSE: To assess the effectiveness of a deep learning model using contrastenhanced ultrasound (CEUS) images in distinguishing between low-grade (grade I and II) and high-grade (grade III and IV) clear cell renal cell carcinoma (ccRCC). METHODS: A retrospective study was conducted using CEUS images of 177 Fuhrmangraded ccRCCs (93 low-grade and 84 high-grade) from May 2017 to December 2020. A total of 6412 CEUS images were captured from the videos and normalized for subsequent analysis. A deep learning model using the RepVGG architecture was proposed to differentiate between low-grade and high-grade ccRCC. The model's performance was evaluated based on sensitivity, specificity, positive predictive value, negative predictive value and area under the receiver operating characteristic curve (AUC). Class activation mapping (CAM) was used to visualize the specific areas that contribute to the model's predictions. RESULTS: For discriminating high-grade ccRCC from low-grade, the deep learning model achieved a sensitivity of 74.8%, specificity of 79.1%, accuracy of 77.0%, and an AUC of 0.852 in the test set. CONCLUSION: The deep learning model based on CEUS images can accurately differentiate between low-grade and high-grade ccRCC in a non-invasive manner.


Assuntos
Carcinoma de Células Renais , Aprendizado Profundo , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Estudos Retrospectivos , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA